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Salutations

Let me offer with humility salutations2 to all my teachers, most of all to the One Real
Innermost Guru, the Guru of all gurus, the real source of everything beautiful and sublime.

1 Introduction

This article is meant to be a brief review of the governing equations of Solid Mechanics
addressed primarily to B.Tech. graduates in Aerospace/ Civil/ Mechanical Engineering
who have already had a course in Advanced Mechanics of Solids and/ or the Theory of
Elasticity. The purpose of such a review is (i) to serve as a recapitulation of the nature
of a revisit (Governing Equations of Solid Mechanics Revisited), and (ii) thus, to set the
stage the stage for the finite element formulation of stress analysis/ structural engineering
problems.

1.1 Why should we learn theory when computers are available?

Some people seem to hold the opinion that it is no more necessary to learn the theory, now
that computers and software packages are readily available. Nothing is farther from the
truth. Computers just cannot be trusted without the knowledge, understanding, apprecia-
tion, experience and judgement of the engineer computist. The data handled and the speed

1Editors’ comments: This is a preliminary version of an extensive discussion of the equations of mechanics
being prepared by the author of the article. The Editors of TechS Vidya e-Journal of Research acknowledge their
thankfulness to the author for kindly permitting them to publish the article in the present form. The copyright
of the paper still rests with the author and it is being published only for strictly academic purposes and for
limited (internal) circulation.

2It is an Indian tradition to remember with pleasure and gratitude one’s teachers and to offer one’s saluta-
tions. Let me too follow this great tradition.
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of operation can be so mind boggling, voluminous and fast that one is often tempted to
give these computers a larger than life image. These factors underscore the absolute neces-
sity to model the physical problems and to formualate them in a way suitable for machine
computation.

Some others feel that it is now pointless to learn the several closed form solutions so
laboriously and ingeniously worked out in the nineteenth century and in the first half of the
twentieth century. One might justifiably ask: if most, if not all, really important problems
can be solved only by numerical procedures, why do we have to learn the several closed
form solutions? Why should we bother to learn the so-called exact solutions which are often
based on idealised situations? Such solutions are exact only in the sense that the governing
mathematical equations are satisfied exactly. These exact solutions are almost always of
approximate problems. Often an approximate solution of an exact problem (or, at least, of
a more realistically formulated problem) is no worse than (often far superior to) an exact
solution.

1.2 A partial answer

The answer to the question raised is in the form of stating these reasons: (i) it improves
our sharpness of intellect and analytical abilities; (ii) the study of these exact solutions of
idealised problems leaves a residue in the form of sophistication and finesse in our thinking;
and (iii) we would become aware of the many complications that we would otherwise have
overlooked, or failed to notice3.

It is perhaps true that the various techniques of solutions painstakingly developed have
partially lost their relevance. This is both a relief and a pity. Some of the techniques are
notoriously laborious (What a relief!), while some are aesthetically beautiful (What a pity!).

When all these factors are taken into reckoning, the governing equations still hold the
centre stage position. They continue to be the heart and soul of the problem formulation. It
is essential to understand them with conceptual clarity.

We shall now take a close look at the governing equations, sometimes referred to as
the field equations of the classical theory of elasticity, or the statics of deformable, elastic
bodies erroneously called strength of materials for a long, long time.

2 The governing equations

The governing equations can be classified under three heads:

(a) the (differential) equations of equilibrium;

(b) the strain-displacement relations; and

(c) the constitutive equations.
3We do not demand, or even suggest, that one should suspect a rabbit in every bush. Yet only one who is

exposed to different situations can detect complications lurking in the background.
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The compatibility equations are not part of the governing equations in this context. See
pages 8, 20 and 21 for some more information and explanatory remarks.

We shall discuss each set of these equations one by one.

3 Differential equations of equilibrium

The stress components σij (9 components, reducing to 6 components because of the sym-
metry of the stress matrix, σij = σji) are required to satisfy the (differential) equations of
equilibrium (6 equations, reducing to 3 if the moment equations, which are responsible for
the symmetry of the stress matrix, are disregarded).

σij,j + Fi = 0 i, j = 1, 2, 3. (1)

(We have used the index notation in this equation: summation over the repeated index j.
Here i and j take the values i, j = 1, 2, 3.. Also, Fi denotes the body force per unit volume
and the comma (,) indicates differentiation.)

Being a tensor equation, this is valid in all coordinate systems. In general, the comma
(, ) is to be understood as standing for covariant differentiation. In the rectangular Cartesian
system, this will reduce to the usual partial derivative. The Christoffel symbols, we recall,
are all zero in such a highly simplified coordinate system.

3.1 In a rectangular Cartesian system

Thus, in a rectangular Cartesian system the above equation (really three equations) reads as

∂σxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ Fx = 0; (2a)

∂τxy
∂x

+
∂σyy
∂y

+
∂τzy
∂z

+ Fy = 0; (2b)

∂τxz
∂x

+
∂τyz
∂y

+
∂σzz
∂z

+ Fz = 0. (2c)

We note that with the symmetry of the stress matrix σij = σji taken into account,
there are six (6) unknowns σij and 3 equations. It is clear from this observation that there
are more unknowns than there are equations. Thus, every problem in stress analysis is
statically indeterminate internally. We know that the equations of equilibrium alone cannot
determine the stress components inside a body; we need to have additional equations.

3.2 In other coordinate systems

The differential equations of equilibrium in other coordinate systems such as, for example,
the cylindrical polar coordinate system can be obtained (a) by drawing an elemental block,
marking all the stress components on the various faces, computing the corresponding forces
by multiplying each of these stress components by the relevant area, and considering the
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net force along each of the three directions and setting it equal to zero; (b) by transform-
ing the equations in the rectangular Cartesian coordinates (x, y, z) to, say, the cylindrical
polar coordinates (r, θ, z) by using the mathematical transformations; or (c) by writing the
equation in tensor form and working out the appropriate form in, say, the cylindrical polar
coordinates (which involves working out the metric tensor gij , computing the Christoffel
symbols and writing out the tensor equation σij,j + Fi = 0 in long hand interpreting the
comman (, ) as the symbol for covariant differentiation). When the indicated processes are
completed, we obtain the desired equations.

3.3 In a cylindrical polar coordinate system

The differential equations in, say, the cylindrical coordinates (r, θ, z) will appear as

∂σrr
∂r

+
1

r

∂τθr
∂θ

+
∂τzr
∂z

+
σrr − σθθ

r
+ Fr = 0; (3a)

∂τrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂τzθ
∂z

+
2τrθ
r

+ Fθ = 0; (3b)

∂τrz
∂r

+
1

r

∂τθz
∂θ

+
∂σzz
∂z

+
τrz
r

+ Fz = 0. (3c)

One way to derive the differential equations of equilibrium is outlined below.

3.4 Derivation of differential equations of equilibrium

A body of volume V enclosed by a surface of area S acted upon by some surface tractions
(ν)

Ti and body forces Fi is shown in Fig. 1. The applied forces and moments and the support
conditions are such that the body is in static equilibrium. The equations of equilibrium,

The body is adequately supported,
and is in static equilibrium. In other
words, the body forces and the sur-
face tractions are statically compat-

ible.
(ν)

T will not, in general, be
along the normal ν. It is not pos-
sible to specify both the tractions
and the corresponding work absorb-
ing displacements at any point on the
boundary.

Figure 1: A body in static equilibrium with surface tractions and body forces
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therefore, are ∫∫
S

(ν)

Ti dS +

∫∫∫
V

Fi dV = 0, (i = 1, 2, 3). (4)

Using Cauchy’s result
(ν)

Ti = σjinj (= σijnj) and changing the surface integral to a volume
integral, we obtain∫∫

S

(ν)

Ti dS +

∫∫∫
V

Fi dV =

∫∫
S

σjinj dS +

∫∫∫
V

Fi dV =

∫∫∫
V

(σij,j + Fi) dV (5)

which should vanish for every arbirary volume V , small or large. This requirement that the
volume integral should vanish for every volume V leads to the conclusion that the integrand
itself should vanish at every point inside V . Thus, we obtain σij,j + Fi = 0 at every point
inside V .

We shall now turn to the next set of governing equations, viz., the strain-displacement
relations.

4 Strain-displacement relations

These are also known as the kinematic relationships. The strain components eij (9 reduced
to 6 because of symmetry, eij = eji) are related to the displacement components u, v, w by
the following six equations.

exx =
∂u

∂x
; eyy =

∂v

∂y
: ezz =

∂w

∂z
; (6a)

exy =
1

2

[
∂u

∂y
+
∂v

∂x

]
; eyz =

1

2

[
∂v

∂z
+
∂w

∂y

]
; ezx =

1

2

[
∂u

∂z
+
∂w

∂x

]
. (6b)

4.1 Compatibility: integrability

The equations (6a) relate the normal strains exx, eyy and ezz to the (partial derivates of) the
displacement components u, v and w, while the ones (6b) relate half4 the shearing strains
to the (partial derivatives5 of) the displacement components.

The six strain components have common parentage; they have all come from the three
displacement components (u, v, w). Thus, the six eij’s are not independent; they are

4The learned professor, Dr Bhoj Raj Seth (B.R. Seth), for long at IIT, Kharagpur, used to emphasise the
absolute necessity of introducing the factor of half in these equations. We should realise that without this factor
of half, the strain matrix will not have the transformation properties enjoyed (and required) by the strain tensor.
A comparison of the transformation equations of stress components and strain components would give us this
insight.

Let me pause here to pay homage to this great teacher of ours with much pleasure and gratitude. What a
great inspiration even his mere presence was!

5‘crossed’ derivatives: u with y, v with x, and so on
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cousins or half brothers. The eij’s are, therefore, related to one another. These relationships
among the six strain components are the compatibility equations. Mathematically speak-
ing, the above six strain-displacement relations may be regarded as a system of six partial
differential equations for the determination of only three unknown functions (displacement
components) u, v and w. Thus, this is an overdetermined system, and consequently this
system cannot have any solution in general; certain conditions must be satisfied so that
there can be admissible (single-valued, continuous) functions u.v, w. These integrability
conditions are the compatibility equations (or conditions).

4.2 Rotations

Associated with the strain components at a point are the rotations ωij . These are the compo-
nents of half of the curl of the displacement vector. The strain components eij are symmet-
ric (eij = eji), while the rotation components are skew-symmetric (ωij = −ωji). Thus,
ωxx = ωyy = ωzz = 0.

ωxx = 0; ωyy = 0 : ωzz = 0; (7a)

ωxy =
1

2

[
∂u

∂y
− ∂v

∂x

]
; ωyz =

1

2

[
∂v

∂z
− ∂w

∂y

]
; ωzx =

1

2

[
∂u

∂z
− ∂w

∂x

]
. (7b)

These rotations are not related to the stress components in Solid Mechanics and, therefore,
they have only a secondary role here. In Fluid Mechanics, on the other hand, they play a
crucial role.

4.3 Kinematic relations in index notations

The above equations can be written compactly in index notation as

eij =
1

2
(ui,j + uj,i); ωij =

1

2
(ui,j − uj,i); [ui,j = ei,j + ωi,j ]. (8)

As remarked earlier, these commas (,) refer to the usual partial differentiation when
rectangular Cartesian coordinates are used. In the general curvilinear coordinnate system,
these commas stand for covariant differentiation. Thus, to obtain the strain-displacement
relations in, say, cylindrical polar coordinates, the metric tensor gij , and then the Christoffel
symbols have to be worked out, and the equations written out in long hand with the commas
intrepreted as covariant differentiation. When the indicated steps or operations are carried
out in full, the strain-displacement relations in cylindrical polar coordinates (r, θ, z) appear
as

err =
∂ur
∂r

; eθθ =
ur
r

+
1

r

∂uθ
∂θ

: ezz =
∂uz
∂z

; (9a)

erθ =
1

2

[
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

]
; eθz =

1

2

[
∂uθ
∂z

+
1

r

∂uz
∂θ

]
; ezr =

1

2

[
∂uz
∂r

+
∂ur
∂z

]
.

(9b)
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Here ur, uθ, uz are the displacement components ui in the cylindrical polar coordinates
(r, θ, z).

In some books, say, for example, in Timoshenko & Goodier, Theory of Elasticity,
u, v, w are taken as the displacement commponents in the (r, θ, z) directions, respectively.
In this case, the strain displacement components appear as

err =
∂u

∂r
; (10a)

eθθ =
u

r
+

1

r

∂v

∂θ
(10b)

ezz =
∂w

∂z
; (10c)

γrθ =2erθ =γθr =2eθr =
1

r

∂u

∂θ
+
∂v

∂r
− v

r
; (10d)

γθz =2eθz =γzθ = 2ezθ =
∂v

∂z
+

1

r

∂w

∂θ
; (10e)

γzr =2ezr =γrz = 2erz =
∂u

∂z
+
∂w

∂r
(10f)

4.4 Two-dimensional axisymmetric case

The simplified case of two-dimensional asisymmetric problems is of special interest. Now
in the polar coordinates (r, θ), the above strain-displacement equations get simplified as

err =
dur
dr

; eθθ =
ur
r
. (11)

We should not fail to notice that, for this axisymmetric case, the displacements are now
only in the radial direction; there are no tangential displaements. Even though the tangential
displacements uθ are everywhere zero, the tangential strain eθθ = ur/r is not zero! Den
Hartog in his characteristic inimitable humour remarks6: “ the first one is fairly obvious,
and the second one refers to the feelings of a middle-aged gentleman who lets out one notch
of his belt after his good dinner.”

4.5 Large displacements: finite elasticity theory

When the displacements are large as in finite elasticity theory, the original and the current
configurations of a body will be quite different. Now we have a choice: the indepenedent
variables may be taken either as (x, y, z) referred to the original (undeformed) configu-
ration, or as (ξ, η, ζ) referred to the current (deformed) configuration. Accordingly, we
may write in the following two ways, and obtain the strain-displacement relations in two
different ways.

6J.P. Den Hartog: Advanced Strength of Materials, McGraw-Hill, 1952.

10



TechS Vidya e-Journal of Research
ISSN 2322 - 0791
Vol. 1 (2012-13) pp.4-24. A brief review of the equations of solid mechanics

Unshaded: original configuration
Shaded: deformed (current) config-
uration

In problems of finite elasticity, the
initial and the final (current) config-
urations can be quite different.

Figure 2: Original and deformed configurations

The material particle P0(x, y, z) moves, on deformation of the body, to the place spec-
ified by P (ξ, η, ζ). The displacements are u, v, w. These may be written as functions
of (x, y, z) or of (ξ, η, ζ). A neighbouring material particle Q0(x + dx, y + dy, z + dz)
moves to the place Q(ξ + dξ, η + dη, ζ + dζ). Accordingly, P0Q0 of original (unde-
formed) length ds0 changes to PQ of final (current) length ds. A nearby material particle
Q0(x+ dx, y + dy, z + dz) moves to the place Q(ξ + dξ, η + dη, ζ + dζ).

The difference in length between ds0 and ds is a measure of the deformation. Writing

the expression
1

2

[
(ds)2 − (ds0)

2
]
, which is a measure of the deformation, in terms of

(x, y, z) or in terms of (ξ, η, ζ), we obtain the following equations. The first is in terms
of the variables (particle labels) (x, y, z), while the second is in terms of the position, or
place, variables (ξ, η, ζ).

1

2

[
(ds)2 − (ds0)

2
]
= exx(dx)

2 + eyy(dy)
2 + ezz(dz)

2

+ exy(dx)(dy) + eyz((dy)(dz) + ezx(dz)(dx) (12)

= Eξξ(dξ)
2 + Eηηdη

2 + Eζζ(dζ)
2

+ Eξη(dξ)(dη) + Eηζ(dη)(dζ) + Eζξ(dζ)(dξ) (13)

The strain-displacement relations are the following:
(a) Lagrangian (independent variables x, y, z)

exx = ux +
1

2

(
u2x + v2x + w2

x

)
(14a)

eyy = vy +
1

2

(
u2y + v2y + w2

y

)
(14b)

ezz = wz +
1

2

(
u2z + v2z + w2

z

)
(14c)

exy =
1

2
[(uy + vx) + (uxuy + vxvy + wxwy)] = eyx (14d)

eyz =
1

2
[(vz + wy) + (uyuz + vyvz + wywz)] = ezy (14e)

11
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ezx =
1

2
[(wx + uz) + (uzux + vzvx + wzwx)] = exz (14f)

The subscript denotes partial differentiation, with respect to the subscript concerned, as, for

example: ux ≡
∂u

∂x
; and uxuy ≡

∂u

∂x
× ∂u

∂y
.

(b) Eulerian (independent variables ξ, η, ζ)

Exx = uξ −
1

2

(
u2ξ + v2ξ + w2

ξ

)
(15a)

Eyy = vη −
1

2

(
u2η + v2η + w2

η

)
(15b)

Ezz = wζ −
1

2

(
u2ζ + v2ζ + w2

ζ

)
(15c)

Eξη =
1

2
[(uη + vξ)− (uξuη + vξvη + wξwη)] = Eηξ (15d)

Eηζ =
1

2
[(vζ + wη)− (uηuζ + vηvζ + wηwζ)] = Eζη (15e)

Eζξ =
1

2
[(wξ + uζ)− (uζuξ + vζvξ + wζwξ)] = Eξζ (15f)

The subscript again denotes partial differentiation, with respect to the subscript concerned,

as, for example: uξ ≡
∂u

∂ξ
; and uξuη ≡

∂u

∂ξ
× ∂u

∂η
.

[Caution:
∂u

∂x
is computed when u is regarded and written as a function of x, y, z. On

the other hand,
∂u

∂ξ
is computed when u is regarded and written as a function of ξ, η, ζ.

These two functions u(x, y, z) and u(ξ, η, ζ) have two different functional forms. Strictly
speaking, if we write u = u(x, y, z), we must write

u = u(x, y, z) = u(x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ)) = u∗(ξ, η, ζ).]

Let us note that in the infinitesimal, linear theory, the nonlinear terms are all disregarded.
Now, in this simplified case, there is no distinction between the Lagrangian and Eulerian
measures of strain. Then, in this case,

uxx = uξξ =
∂u

∂x
; vxx = vηη =

∂v

∂y
; wzz = wζζ =

∂w

∂z
. (16)

In index notation, the strain-displacement equations read

eij =
1

2
[ui,j + uj,i + ul,iul,j ] (Lagrangian); (17)

Eij =
1

2
[ui,j + uj,i − ul,iul,j ] (Eulerian). (18)

As indicated above, it is not a good idea to use the same letter u when the indepenedent
variables are (x, y, z), and also when they are (ξ, η, ζ).
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When the deformations are large, it is almost indispensable to employ general tensors,
and not just Cartesian tensors. Thus, if ui and Ui are the displacement vectors from P0 to
P referred to the frames of reference A and B,

eij =
1

2
[ui,j + uj,i + ul,iu

l
,j ] (Lagrangian); (19)

Eij =
1

2
[Ui,j + Uj,i − Ul,iU l,j ] (Eulerian). (20)

Let us note that these are different from those for the classical, linear theory by adding (+)
or subtracting (-) a ‘small’ nonlinear term.

Having discussed the strain-displacement relations, we shall next consider the constitu-
tive equations.

5 Constitutive equations

These are also known as the material law, Hooke’s law, or the generalised Hooke’s law in
the restricted case of the classical linear theory of elasticity.

The nine (9) stress components (9 reduced to 6 because of symmetry) are related to the
nine (9) strain components (9 reduced to 6 because of symmetry again). In the simplest
case of infinitesimal, linear, isotropic, elastic materials (which alone we consider for the
most part here), these are given by the following equations.

5.1 Generalised Hooke’s law: strains in terms of stresses

exx =
1

E
[σxx − ν (σyy + σzz)] , (21a)

eyy =
1

E
[σyy − ν (σzz + σxx)] , (21b)

ezz =
1

E
[σzz − ν (σxx + σyy)] , (21c)

γxy ≡ 2exy = 2eyx ≡ γyx =
τxy
G
, (21d)

γyz ≡ 2eyz = 2ezy ≡ γzy =
τyz
G
, (21e)

γzx ≡ 2ezx = 2exz ≡ γxz =
τzx
G
, (21f)

where E and G are the modulii of elasticity and rigidity, respectively.

5.2 Stresses in terms of strains

The above equations may be inverted to give the stress components in terms of the strain
components as

σxx =
νE

(1 + ν)(1− 2ν)
e+

E

1 + ν
exx, (22a)

13
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σyy =
νE

(1 + ν)(1− 2ν)
e+

E

1 + ν
eyy, (22b)

σzz =
νE

(1 + ν)(1− 2ν)
e+

E

1 + ν
ezz, (22c)

τxy = Gγxy, (22d)

τyz = Gγyz, (22e)

τzx = Gγzx, (22f)

where e ≡ exx + eyy + ezz is the volumetric strain (the first invariant of the strain tensor
eii).

5.3 In terms of Lamé’s constants

It is sometimes conveneient to write these in the form

σxx = λe+ 2Gexx, (23a)

σyy = λe+ 2Geyy, (23b)

σzz = λe+ 2Gezz, (23c)

τxy = Gγxy = 2Gexy, (23d)

τyz = Gγyz = 2Geyz, (23e)

τzx = Gγzx = 2Gezx, (23f)

in terms of the Lamé’s constants λ and G, which are related to the Young’s modulus of
elasticity, E and the Poisson’s ratio, ν by the equations

λ =
νE

(1 + ν)(1− 2ν)
, (24a)

G =
E

2(1 + ν)
. (24b)

We note that there are only two (2) independent elastic constants for a linear, elastic,
isotropic material. These are usually taken as E and ν by engineers. Applied mathemati-
cians and elasticians sometimes prefer to work in terms of the Lamé’s constants λ and G.
The constitutive equations, that is, the generalised Hooke’s law in this case, may be written
in index notation as

σij = λδijekk + 2Geij , (25)

where δij is the Kronecker delta.

5.4 Anisotropy and orthotropy

Materials cannot always be treated as isotropic. Some materials have intrinsically different
properties along different directions. Cold rolled copper and wood are two cases in point.

14
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The properties are different along the directions of rolling. Similarly, the properties along
the grains are distinctly different from those perpendicular to this direction. Sometimes
the method of construction introduces anisotropy in a structure. If ribs are provided in one
direction, but not in the other, a slab or a plate, made up of essentially an isotropic material,
will exhibit anisotropy. More significantly, composites, which have in recent times become
an important structural material, are decidedly anisotropic. To deal with such materials, we
need to consider anisotropic elasticity also.

If the nine (9) stress components are related to the nine (9) strain components by the
linear equations eij = cijklσkl, we can see that there are 9 × 9 = 81 elastic constants
eijkl (i, j, k, l = 1, 2, 3; 34 = 81). If the symmetry conditions σij = σji and eij = eji
are invoked, this number 81 reduces to 36 (6 × 6 = 36). If, furthermore, the existence
of a strain energy density function is assumed, this number 36 reduces to 21. Thus, in the
general case of anisotropy, there are 21 elastic constants.

To continue with such simplifications or reductions, if there is one plane of elastic sym-
metry, this number will be reduced further to 13. If the material has three planes of elastic
symmetry, there will be only nine (9) elastic constants. These are called orthotropic mate-
rials. (Many types of bio-membranes such as cell walls should be modeled as orthotropic.)
And finally, when the material is isotropic, this number nine (9) reduces further to three (3).
Even these three (3) are not independent. Thus, we may conclude that there are just two
(2) independent elastic constants for a linear, elastic, isotropic material. These, as indicated
earlier, are usually taken as E and ν, or the Lamé’s constants λ and G.

We shall next recapitulate an important principle widely used in mechanics, viz., the
principle of virtual work as applied to a deformable body.

6 Principle of virtual work

We shall now consider the principle of virtual work in a form that is applicable to a de-
formable body. This equation that will be discussed in this section perhaps does not enjoy
the same status as a governing equation as the ones in the three sets of equations discussed
above. Nevertheless, it is a general principle that has far reaching implications, and is the
basis of several energy principles of mechanics. In this sense, it is an equation of funda-
mental importance.

Let us recall from elementary mechanics the principle of virtual work applied to rigid
bodies, and to deformable bodies made up of rigid elements, such as mechanisms. This
principle, when applied to rigid bodies, does not give us anything new or particularly use-
ful7, but it is of great use when applied to mechanisms. This principle is equally valid for
deformable bodies discussed in the mechanics of solids. However, it is to be recast in a
form that can be applied to solid mechanics. We shall undertake such an exercise below.

7J.P. Den Hartog: Mechanics, dover Publications, New York, 1948. We advise the readers to be sure to
read what this extraordinarily humorous author has to state in this context (about the Duke of Malborough who
marched his army of twenty thousand men up a hill, and marched them down again!)
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Cosider a deformable body in static equilibrium acted upon by a body force distribution

Fi acting throughout its volume V , and surface traction
(ν)

Ti acting throughout the surface

S = S1 + S2. See Fig. 1. On one part S1 of the boundary, the surface tractions
(ν)

Ti are
prescribed and, therefore, known. On the other remaining part S2, the displacements ui
are prescribed and, therefore, known. (We may point out that it is not possible, in general,
to prescribe both the surface traction and the displacements in advance on any part of the
boundary; that is, here the surface traction on S2, nor the displacements on S1.)

If a virtual displacement field δui is applied, the various forces undergoing the virtual
displacements will perform some virtual work. It is emphasised that during the small hy-
pothetical8 virtual displacements, (i) the applied forces are all held constant, and that (ii)
the virtual displacements must be consistent with the prescribed (i.e., specified or given)
displacement boundary conditions and the constraints. This second condition demands that
δui = 0 on S2. The principle of virtual work states that the total virtual work done by all
the forces, the external ones (body forces and tractions) which are externally applied on
the body), and the internal ones (stresses which are internally developed inside the body)
during these virtual displacements is zero.

It is more convenient, however, to compute the external virtual work, and to show that
it is equal9 to the internal virtual work. This is what we propose to do below.

Accordingly, a virtual displacement (actually a virtual displacement field) δui is im-
posed on the body, and the external virtual work is computed as follows.

δWvirtual =

∫∫∫
V

Fi δui dV+

∫∫
S

(ν)

Ti δui dS (index notation; summation over i). (26)

The second integral may cover either S1 only, or the entire surface S. It makes no difference,
because δui has to be zero on S2. No variation is permissible on S2, as the displacements
ui are prescribed there.

When Cauchy’s result, viz.,
(ν)

Ti = σjinj (= σijnj) is used in the second integral, the
above equation (26) reads

δWvirtual =

∫∫∫
V

Fi δui dV +

∫∫
S

σijnj δui dS (27)

=

∫∫∫
V

Fi δui dV +

∫∫∫
V

(σij δui),j dV (28)

=

∫∫∫
V

Fi δui dV +

∫∫∫
V

[σij (δui),j + σij,j (δui)] dV (29)

8This must be seen correctly in the light of the Calculus of Variations in the background.
9It may appear contradictory to state that (i) the sum of the external and internal virtual work is zero, and

again that (ii) the external virtual work done is equal to the internal virtual work done. There is no conflict or
contradiction here; the correct algebraic signs are also to be taken into our reckoning.
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=

∫∫∫
V

(Fi + σij,j) δui dV +

∫∫∫
V

σij (δui),j dV. (30)

The surface integral in Eq.(27) is replaced by the corresponding volume integral in Eq.(28)
using Gauss’ theorem. Also, the second term in the second integral in Eq.(29) is transferred
to the first integral in Eq.(30).

The first integral vanishes, because σij,j + Fi = 0 (equations of equilibrium). We need
to process the second integral to obtain the result in the desired convenient form. Towards
this end, let us introduce a kinematically compatible strain field variation δeij .

We note that the operators δ and (, ) commute; that is, the order of the operations of
variation δ and of partial differentiation (, ) is interchangeable. Thus,

(δui),j = δ(ui,j) = δ(eij + ωij) = δeij + δωij (31)

where we have written ui,j = eij + ωij . See Eq.(8).
Consider now the integrand in the second integral of Eq.(30):

σij (δui) = σij [δeij + δωij ] = σij δeij . (32)

Let us recall that (i) the stress tensor σij is symmetric σij = σji), (ii) the rotation tensor
ωij is skew-symmetric (ωij = −ωji); and that, therefore, (iii) the product σij δωij = 0.

σij δωij = σji δωij (symmetry of σij)

= −σji δωji (skew-symmetry of ωij)

= −σij δωij (interchange of i and j; both dummy indices). (33)

The term σij δωij is equal to −σij δωij , showing that each of them must be zero. Thus, we
arrive at the result in the desired form as∫∫∫

V

Fi δui dV +

∫∫
S

(ν)

Ti δui dS =

∫∫∫
V

σij δeij dV. (34)

One way to interpret this equation is to realise that the left hand side may be regarded
as the external virtual work, and that the right hand side as the internal virtual work.

It is, of course, understood that the body force distributions Fi and the surface tractions
(ν)

Ti are statically compatible in the sense that the body is in static equilibrium.
We note that a necessary condition for static equilibrium is that the external virtual

work is equal to the internal virtual work done for any kinematically compatible (admis-
sible) deformable field (δui, δeij), as long as the body forces Fi and the surface tractions
(ν)

Ti are statically compatible. We can show that this condition is also sufficient for static
equilibrium.

A very significant, and perhaps surprising, fact is that this equation holds, no matter
what the constitutive equation is! The constitutive equations connecting the stress compo-
nents σij and the strain components eij do not enter into it.

17



TechS Vidya e-Journal of Research
ISSN 2322 - 0791
Vol. 1 (2012-13) pp.4-24. A brief review of the equations of solid mechanics

7 Some general observations

We shall make a few general observations here which would clarify the overall picture.

7.1 Materials, models and constitutive equations

Not all materials can be regarded as elastic. There are many other models where the material
will have to be considered as plastic, viscoelastic, thermoelastic, etc. In all these cases, the
material law (that is, the constitutive equations) will be entirely different. More complicated
constitutive equations will have to be employed when we need to consider materials with
memory, etc.

It is repeated for emphasis: whether a material is elastic, plastic or viscoelastic is not an
intrinsic property of the material. Concrete, for example, may be considered as an elastic
material for some purposes. However, if long term creep effects have to be considered, the
concrete, the very same concrete, will now have to be treated (or modeled) as a viscoelastic
material. Stated differently, the words elastic, plastic, viscoelastic, etc., refer not so much to
the material, but to the model that we employ. The model chosen should be in accordance
with our objective.

In many cases, the constitutive relations are extremely difficult to find and write down.
Blood and bio-fluids present major challenges in this regard. It is difficult even to suggest
the form of the constitutive equations. It is even more difficult to obtain experimentally
the numerical values of the constants or parameters that appear in the proposed constitutive
equations.

Comprehensive theories on constitutive equations have been developed. There are some
basic, fundamental ideas. The principle of material frame indifference, often referred to as
the principle of objectivity, places some restrictions on the constitutive relationships. These
considerations are quite abstract. These cannot be discussed here.

7.2 (a) and (b) same for all models

It is important to realise that the first two sets of equations, that is, (a) the differential
equations of equilibrium, and (b) the strain-displacement relations, are the same for all
materials (more appropriately referred to as for all models). It is the third set of equations
(c), and the third set (constitutive equations) alone, that are different for other materials
(models) such as plastic, viscoelastic and thermoelastic materials (models).

Even though the strain-displacement relations are the same for all materials (models),
there could be differences in the actual equations used. In the classical, infinitesimal, lin-
ear theory of elasticity, it may be sufficient to retain only the linear terms, and the strain-
displacement relations accepted as

eij =
1

2
(ui,j + uj,i). (35)
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When large strains are encountered, the nonlinear terms also may have to be included.

eij =
1

2
(ui,j + uj,i + ul,iul,j) (36)

exx =
∂u

∂x
+

1

2

[(
∂u

∂x

)2

+

(
∂v

∂x

)2

+

(
∂w

∂x

)2
]

(37)

and its companion equations. (See pp. 10-13, or better still, refer to a standard book on
finite elasticity theory.)

Similarly, when large strains and strain rates have to be considered as in plasticity, other
measures of strain are sometimes employed. In the early days of development of the theory
of plasticity, it was common to use the so-called true strain (logarithmic strain). (There
is nothing true about such a measure of strain, nor anything false about other measures of
strain.)

7.3 General comments

A word or two may be added about the Poisson’s ratio ν. A realistic value is about 0.3
for many engineering materials like steel. Some materials like beryllium and concrete have
such low values of ν that they are sometimes considered as zero for simplifying calculations.
Several equations become simpler if the Poisson’s ratio ν is set equal to zero. The upper
limit of ν is 0.5, because we may accept that, for example, a hydrostatic state of compression
cannot possibly lead to an increase in volume! However, anomalous behaviour does occur
now and then. Strange situations have come up in recent years. In plasticity theory, we often
assume incompressibility; this is equivalent to assuming that the Poisson’s ratio ν = 0.5.

We have seen that, in general, there are 15 governing equations to determine 15 un-
known functions. These unknowns, which are all functions of position, are (i) the stress
components σij (9 reduced to 6 because of symmetry); (ii) the strain components eij (9
reduced to 6 because of symmetry); and (iii) the displacement components ui (3). The
governing equations available to determine the aforesaid 15 unknown functions are (a) the
differential equations of equilibrium (3); (b) the strain-displacement relations (6); and (c)
the constitutive equations (here for the classical, linear theory of elasticity, the generalised
Hooke’s law) (6). The unknowns are 6+6+3 = 15 in number, while the equations available
to determine them are also 3 + 6 + 6 = 15.

Thus, the general problem of having to determine 15 unknown functions from the avail-
able 15 equations, several of them differential equations, is far too difficult even for the
best mathematicians. Even though some of the finest mathematicians had been labouring
assiduously on these problems during the last 250 years or even more, the problem is still
far from being solved completely. Several remarkable advances have, no doubt, been made.
Yet these are not anywhere near a successful solution of the general problem. Thus, it is
essential to look for numerical methods of solution. One of the most promising methods of
solution, perhaps the most successful one, is the finite element method.

We shall make a few comments on the compatibility equations.
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7.4 Compatibility equations and their role

The compatibility equations are not part of the governing equations in this formulation.
Their role is merely to ensure that the displacements are admissible functions (single-
valued, continuous10). If the displacement components are assumed, then the compatibility
equations have no further role to play. This is the case in, say, St. Venant’s semi-inverse
method to solve the torsion problem (and, indeed, the more general bending problem). In
the traditional finite element formulation11, a displacement field inside a finite element (in
terms of the nodal values) is assumed. Here too, therefore, the compatibility equations
do not have to be considered. Another way of stating this fact is that the compatibility
equations will now be automatically satisfied.

The compatibility equations in rectangular Cartesian coordinates are the following.
They are six (6) in number, three in each of the two groups shown below.

∂2exx
∂y2

+
∂2eyy
∂x2

= 2
∂2exy
∂x∂y

(38a)

∂2eyy
∂z2

+
∂2ezz
∂y2

= 2
∂2eyz
∂y∂z

(38b)

∂2ezz
∂x2

+
∂2exx
∂z2

= 2
∂2exz
∂x∂z

(38c)

∂2ezz
∂x∂y

+
∂2exy
∂z2

=
∂2eyz
∂z∂x

+
∂2ezx
∂y∂z

(38d)

∂2eyy
∂x∂z

+
∂2exz
∂y2

=
∂2exy
∂y∂z

+
∂2eyz
∂x∂y

(38e)

∂2exx
∂y∂z

+
∂2eyz
∂x2

=
∂2exz
∂x∂y

+
∂2exy
∂x∂z

(38f)

In index notation, these appear in capsule form as

eij,kl + ekl,ij − eik,jl − ejl,ik = 0, (i, j, k, l = 1, 2, 3). (39)

Although there are 3× 3× 3× 3 = 81 equations here, only six (6) of them, the ones shown
above in long hand in rectangular Cartesian coordinates, are independent.

The compatibility equations will play the crucial role of a governing equation when
the stresses (stress distributions) are proposed as possible solutions. A case in point is the
solution of two-dimensional problems using the Airy’s stress function. The Airy’s stress
function φ = φ(x, y) is so cleverly defined that the equations of equilibrium are automati-
cally satisfied. Now the question is this: will any choice of φ = φ(x, y) solve the problem?
The answer is a firm no.

10They may have to be differentiable too so that the strain components exist. We cannot examine such
mathematical conditions rigorously here.

11In recent years, there have been mixed formulations. The compatibility conditions are important when the
stresses are assumed without considering if the resulting displacements match.
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7.5 Two essential requirements

Why is this so? We shall examine the situation carefully. There are primarily two require-
ments. (i) One, the stress distribution must satisfy the equations of equilibrium. This condi-
tion is automatically satisfied because of the clever definition of the Airy’s stress function.
(ii) Now the second requirement is the following. These stress distributions will correspond
to strain distributions which, in turn, will correspond to displacement distributions. These
displacement distributions shall be compatible. When the Airy’s stress function φ = φ(x, y)
is assumed, the first condition is clearly satisfied, while nothing is known about the second
condition, the condition of the compatibility of displacements. Thus, in such problems, the
Airy’s stress function φ = φ(x, y) must satisfy the biharmaonic equation54φ = 0, which
is really the statement of compatibility of the resulting displacements.

This situation is often the source of difficulty in elasticity problems. Two conditions
shall be uncompromisingly satisfied: (i) the equations of equilibrium, and (iii) the compat-
ibility of displacements. The first is on the stresses or stress distributions, while the second
is on the displacements or displacement distributions.

We shall not pursue the matter further here except to state that there are several ap-
proaches that address this difficulty, the most important of which are the energy theorems.

7.6 Other aspects

In addition to what is stated so far, thermodynamics also plays a role in the mechanics of
solids. This role is more than nominal in, say, problems in the theory of plasticity. Con-
siderable energy is dissipated during plastic flow, and naturally enough, thermodynamics,
often irreversible thermodyanmics, assumes importance.

We have not examined various issues, important though they are, here. Uniqueness of
solution, St. Venant’s principle, etc. are some of them. Even more important is the ques-
tion: are the stresses inside a body independent of the material of the body? This question
is not easy to answer comprehensively covering all situations. Under what conditions are
the stresses independent of the material? This question and its answer are of prime impor-
tance in, say, photoelasticity. If the stresses are dependent on the material, it is pointless
to determine experimentally the stresses in a model made up of a photoelastic material to
know the stresses in, say, a dam made of concrete.

7.7 An interesting observation

We shall point out below an interesting feature which would throw additional light on some
aspects related to our topic.

We had, we may recall, classified the governing equations (on p. 5) into (a), (b) and (c).
They can be rewritten again in a slightly different form.

(a) The (differential) equations of equilibrium,

(b) the strain-displacement relations, and
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(c) the constitutive equations.

These are, respectively,

L1σ = F , (40a)

L2u = e, (40b)

L3e = σ. (40c)

where L1, L2 and L3 are three linear12 operators.
In two dimensions, the equations (40a) and (40b) are,

[
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]
σxx

σyy

τxy

 =

[
Fx

Fy

]
(41a)


∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x


[
u

v

]
=


exx

eyy

2exy

 . (41b)

We can note the curious relationship13 between the two linear operators L1 and L2, viz.,
L1 = LT2 !

The same interesting relationship can be seen in three dimensions also.


∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x





σxx

σyy

σzz

τxy

τyz

τzx


=


Fx

Fy

Fz

 (42a)



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x




u

v

w

 =



exx

eyy

ezz

2exy

2eyz

2ezx


(42b)

12in the usual classical, linear theory of elasticity
13I acknowledge with much pleasure and gratitude the interesting personal discussions with Dr Gangan

Prathap and private correspondence with Dr Somenath Mukherjee on this topic, even though I happen to have
slight differences of opinion with these very learned scientists who are specialists in the area of finite element
methods.
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For an isotropic material with λ = Eν/[(1 + ν)(1 − 2ν)] (where E,G and ν are,
respectively, the Young’s modulus of elasticity, the shear modulus and the Poisson’s ratio),
the constitutive equation (40c) can also be written in the following form.

(λ+ 2G) λ λ 0 0 0

λ (λ+ 2G) λ 0 0 0

λ λ (λ+ 2G) 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G





exx

eyy

ezz

2exy

2eyz

2ezx


=



σxx

σyy

σzz

τxy

τyz

τzx


(43)

The above equations give us a clue of when the stiffness matrix in a finite element
formulation can be expected to be symmetric. If the operator L3 in Eq. (40c) is symmetric,
(that is. the 6× 6 matrix in Eq. (43) is symmetric, LT3 = L3), we can obtain the following
relation.

F = L1σ

= L1 [L3e]

= L1 [L3 (L2u)]

= [L1L3L2]u

=
[
LT2 L3L2

]
u,

indicating that, as L1 = LT2 , the relationship

F =
[
LT2 L3L2

]
u (44)

is symmetric whenever the operatorL3 is symmetric. This equation tells us that the stiffness
matrix will be symmetric when the constitutive operator L3 is symmetric (which is usually,
but not necessarily always, the case).

8 Closure

Given above is a brief recapitulation of the governing equations of Solid Mechanics. We
shall have to be satisfied with this in the context of a review of the governing equations as a
prerequisite to learn the finite element method.
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