Course coo	le Course Name	L-T-P- Credits	Year of Introduction
ME401	DESIGN OF MACHINE ELEMENTS - I	3-1-0-4	2016
Prerequisite	ME201 Mechanics of Solids	T & 4	4
Course Obj	ectives:	AN	A
• To re	view concepts of statics and strength of materials.	LIV	1
To in	troduce fundamental approaches to failure prevention of con	nponents.	
• To pro	ovide knowledge in the design of common machine elemen	ts such as faste	eners, shafts,
spring	s cotter joints and couplings.	V	
Syllabus Introduction	to Design, Materials and their properties, Theories of	[•] Failure, Sho	ck and impact
loads,Thread	ded Joints, Bolted joints, Design of riveted joints, Cotter a	nd Knuckle jo	oints, Design of
welded joint	s, Helical springs, Leaf springs, Shafting, Design of Couplin	g.	
Expected or The students i. Find cond ii. Devi Text Books 1. J 2. F	atcome: s will be able to out various stresses induced in a machine element under dif itions. se machine components for its conceptual design. : alaludeen , Machine Design, Anuradha Publications, Chenna R. L. Norton, Machine Design – An Integrated Approach, Pe	ferent type of ai,2014 arson Educatio	loading on, 2001
5. (.D.Dhandari, Design of Machine cicilients, Meeraw 1111, 2	010	
Data books	permitted for reference in the final examination:		
1. K D 2. N H 3. P	L. Mahadevan, K.Balaveera Reddy, Design Data Hand Book Distributors, 2013 JarayanaIyengar B.R & Lingaiah K, Machine Design Data H Iill/Suma Publications, 1984 SG Design Data, DPV Printers, Coimbatore, 2012	, CBS Publishe Iandbook, Tata	ers & 1 McGraw
References B	Books:		
1. J. 2. Ju W 3. M 4. Ra	E. Shigley, Mechanical Engineering Design, McGraw Hill, avinall R.C & Marshek K.M., Fundamentals of Machine Cor Viley,2003 T. F. Spotts, T. E. Shoup, Design of Machine Elements, Pears ajendra Karwa, Machine Design, Laxmi Publications,2006	2003 nponent Desig son Education,	n, John 2006

Course Plan				
Module	Contents	Hours	End Sem. Exam	
	ADI ARDI II KALA	NA	Marks	
I	Introduction to Design- Definition, steps in design process, preferred numbers, standards and codes in design Materials and their properties- Elastic and plastic behaviour of metals, ductile and brittle behaviour, shear, bending and torsional stresses, combined stresses, stress concentration factor.	4	15%	
П	Theories of Failure- Guest's Theory, Rankine's Theory, St. Venant's Theory, Haigh's Theory, and Von Mises and Hencky Theory.	5	15%	
m	Shock and impact loads, fatigue loading, endurance limit stress, factors affecting endurance limit, factor of safety	6	1370	
	FIRST INTERNAL EXAM			
TT	Threaded Joints- Terminology, thread standards, types of threads, stresses in screw threads	3	- 15%	
111	Bolted joints- effect of initial tension, eccentric loading, design of bolts for static and fatigue loading, gasketed joints, power screws	4		
	Design of riveted joints- Material for rivets, modes of failure, efficiency of joint, design of boiler and tank joints, structural joints	4	15%	
IV	Cotter and Knuckle joints- Gib and Cotter Joint, analysis of knuckle joint.	4		
	Design of welded joints- welding symbols, stresses in fillet and butt welds, Butt joint in tension, fillet weld in tension, fillet joint under torsion, fillet wed under bending, eccentrically loaded welds.	4		
	SECOND INTERNAL EXAM	1		
V	Springs- classification, spring materials, stresses and deflection of helical springs, axial loading, curvature effect, resilience, static and fatigue loading, surging, critical frequency, concentric springs, end construction.	5	20%	
	Leaf springs- Flat springs, semi elliptical laminated leaf springs, design of leaf springs, nipping	4		
VI	Shafting- material, design considerations, causes of failure in shafts, design based on strength, rigidity and critical speed, design for static and fatigue loads, repeated loading, reversed bending	5	20%	
	Design of Coupling- selection, classification, rigid and flexible coupling, design of keys and pins	3		
END SEMESTER EXAM				

Time: 3 hrs

Use of approved data book permitted

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 3 questions from module I and II and at least 1 question from each module Each question carries 15 marks Students will have to answer any 2 questions out of 3 (2X15 marks =30 marks)

Part B

There should be 3 questions from module III and IV and at least 1 question from each module Each question carries 15 marks

Students will have to answer any 2 questions out of 3 (2X15 marks = 30 marks)

Part C

There should be 3 questions from module V and VI and at least 1 question from each module Each question carries 20 marks

Students will have to answer any 2 questions out of 3 (2X20 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

2014

Course No.	Course Name	L-T-P- Credits	Year of Introduction
ME 402	Design of Machine Elements-II	3-0-0-3	2016
Prerequisite: N	IE401 Design of Machine Elements-I	A &	4
Course Object • To con • To	tives: provide basic design methods for clutches, brakes, belt c necting rod. introduce the design modifications to be considered for ease o	lrives, bear f manufactu	ings, gears and uring.
Syllabus Design of sin band brake, b contact bearin design of V-l forgings, cast produced on r	gle plate clutches, multiple disc clutches, cone clutch, centri and and block brake, internal expanding shoe brake, rollin ng, spur gear, helical gear, bevel gear, worm and worm v belt drives, selection of roller chains, connecting road, des ings, welded products, rolled sections, turned parts, screw nilling machines.	fugal clutcl g contact b vheel, desig ign recomm machined	h, block brake, pearing, sliding gn of flat belt, nendations for products, parts
Expected outcome The students w 1. Apply designation 2. Design matching	ome: ill be able to gn procedures for industrial requirements. chine comp <mark>on</mark> ents to ease the manufacturing limitations.	7	
Text Books:1.J. E. Sh2.Jalalude3.V.B.Bh	igley, Mechanical Engineering Design, McGraw Hill,2003 een , Machine Dsign, Anuradha Publications, 2016 andari, Design of Machine elements, McGraw Hill, 2016		
References Boo	oks:		-
1. Juvinall 2011	R.C & Marshek K.M., Fundamentals of Machine Componen	t Design, Jo	ohn Wiley,
2. M. F. Sp	otts, T. E. Shoup, Design of Machine Elements, Pearson Edu	cation, 200	6
3. Rajendra	a Karwa, Machine Design , Laxmi Publications (P) LTD, Nev	v Delhi, 20	06
4. Siegel, N	Aaleev& Hartman, Mechanical Design of Machines, Internati	onal Book	Company, 1983
Data books pe 1. K. Maha 2013 2. Narayan 1984 3. PSG Des	ermitted for reference in the examination: Idevan, K.Balaveera Reddy, Design Data Hand Book, CBS P a Iyengar B.R & Lingaiah K, Machine Design Data Handboo sign Data. DPV Printers. Coimbatore. 2012	ublishers & k, Tata Mc	Distributors, Graw Hill,

Course Plan					
Module	Contents Clutches – friction clutches, design considerations, multiple disc clutches, cone clutch, centrifugal clutch	Hours 2	End Sem. Exam Marks		
	Brakes- Block brake, band brake, band and block brake, internal expanding shoe brake	3			
н	Rolling contact bearing- Design of bearings, Types, Selection of a bearing type, bearing life, static and dynamic load capacity, axial and radial loads, selection of bearings, dynamic equivalent load	4	150/		
11	Sliding contact bearing- lubrication, lubricants, viscosity, Journal bearings, hydrodynamic theory, Sommerfield number, design considerations, heat balance, bearing housing and mountings	4	15%		
	FIRST INTERNAL EXAM				
Ш	Gears- classification, Gear nomenclature, Tooth profiles, Materials of gears, Law of gearing (review only), virtual or formative number of teeth, gear tooth failures, Beam strength, Lewis equation, Buckingham's equation for dynamic load, wear load, endurance strength of tooth, surface durability, heat dissipation – lubrication of gears – Merits and demerits of each type of gears.	3	15%		
	Design of spur gear	3			
	Design of helical gear	2			
IV	Design of bevel gear	2	15%		
	Design of worm & worm wheel	3			
	SECOND INTERNAL EXAM				
	Design of flat belt- materials for belts, slip of the belts, creep, centrifugal tension	3			
V	Design of V-belt drives, Advantages and limitations of V-belt drive	3	20%		
	Selection of roller chains, power rating of roller chains, galling of roller chains, polygonal action, silent chain.	3			
	Connecting rod – material, connecting rod shank, small end, big end, connecting rod bolts, inertia bending stress, piston	5	20%		
V I	Pressure vessels, thin cylinders, Thick cylinder equation, open and closed cylinders.	2			
I	END SEMESTER EXAM				

QUESTION PAPER PATTERN

Time: 3 hrs

Note : Use of approved data book is permitted

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 3 questions from module I and II and at least 1 question from each module Each question carries 15 marks

Students will have to answer any 2 questions out of 3 (2X15 marks = 30 marks)

Part B

There should be 3 questions from module III and IV and at least 1 question from each module Each question carries 15 marks Students will have to answer any 2 questions out of 2 (2X15 marks -20 marks)

Students will have to answer any 2 questions out of 3 (2X15 marks = 30 marks)

Part C

There should be 3 questions from module V and VI and at least 1 question from each module Each question carries 20 marks Students will have to answer any 2 questions out of 3 (2X20 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

2014

Ect?

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME403	ADVANCED ENERGY ENGINEERING	3-0-0-3	2016
Prerequisite:	Nil	T A A	

Course Objectives:

- 1. To give an idea about global energy scenario and conventional energy sources
- 2. To understand solar, wind and Biomass energy
- 3. To know concepts of other renewable energy sources
- 4. To create awareness on the impacts of energy conversion and importance of sustainable energy

Syllabus

Global and Indian energy scenario, conventional energy sources, environmental effect of energy conversion, renewable energy sources- solar, wind, biomass, brief account of other renewable energy sources –geothermal, tidal, MHD, hydrogen, fuel cells, small scale hydro power plants. Environmental impact and Sustainability issues.

Expected outcome:

The students will be able to

- i. Understand energy scenario and the environmental effects of energy conversion.
- ii. Become aware of different renewable energy sources and choose sustainable energy for

Text Books:

- 1. Jefferson W Tester et.al., Sustainable Energy: Choosing Among Options, PHI, 2006
- 2. P K Nag, Power Plant Engineering, TMH, 2002
- 3. Tiwari G N, Ghosal M K, Fundamentals of renewable energy sources, Alpha Science International Ltd., 2007

References Books:

- 1. David Merick, Richard Marshall, Energy, Present and Future Options, Vol.I & II, John Wiley & Sons, 2001
- 2. Godfrey Boyle, Renewable Energy : Power for a Sustainable Future, Oxford University Press, 2012
- 3. Roland Wengenmayr, Thomas Buhrke, 'Renewable Energy: Sustainable energy concepts for the future, Wiley VCH, 2012
- 4. Twidell J W and Weir A D, Renewable Energy Resources, UK, E&F.N. Spon Ltd., 2006

	Course Plan				
Module	Contents		End Sem.		
	2014		Exam		
	2014		Marks		
Ι	Introduction to the course. Global and Indian energy resources. Energy Demand and supply. Components, layout and working principles of steam, hydro, nuclear, gas turbine and diesel power plants	7	15%		
п	Solar Energy- passive and active solar thermal energy, solar collectors, solar thermal electric systems, solar photovoltaic systems. Economics of solar power. Sustainability attributes.	7	15%		
FIRST INTERNAL EXAM					

III	Wind Energy-Principle of wind energy conversion system, wind data and energy estimation, wind turbines, aerodynamics of wind turbines, wind power economics. Introduction to solar-wind hybrid energy systems	7	15%
IV	Biomass Energy – Biomass as a fuel, thermo-chemical, bio-chemical and agro-chemical conversion of biomass- pyrolysis, gasification, combustion and fermentation, transesterification, economics of biomass power generation, future prospects.	6	15%
	SECOND INTERNAL EXAM		
v	Other Renewable Energy sources – Brief account of Geothermal, Tidal , Wave, MHD power generation, Small, mini and micro hydro power plants. Fuel cells – general description, types, applications. Hydrogen energy conversion systems, hybrid systems- Economics and technical feasibility		20%
VI	Environmental impact of energy conversion – ozone layer depletion, global warming, greenhouse effect, loss of biodiversity, eutrophication, acid rain, air and water pollution, land degradation, thermal pollution, Sustainable energy, promising technologies, development pathways	7	20%
	END SEMESTER EXAM		

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P-Credits	Year of Introduction		
ME404	INDUSTRIAL ENGINEERING	3-0-0-3	2016		
Prerequisite: Nil					

Course Objectives:

- To impart theoretical knowledge about various tools and techniques of Industrial Engineering.
- To create awareness about various safety procedures to be followed in carrying out different types of projects.
- To get acquainted with the Inventory management Principles and Techniques.
- To equip with the theoretical knowledge on Quality control practices and testing methods.

Syllabus

Introduction to Industrial Engineering, Plant layout and Material handling, Methods engineering, Industrial relations, Production planning and control, Quality control and Inspection

Expected outcomes:

The students will be able to

- i. Know various tools and techniques in industrial Engineering.
- ii. Develop work procedure applying the principles of work study.
- iii. Apply inventory control techniques in materials management.
- iv. Formulate replacement and purchase decisions and arrive at conclusions

Text Books:

- 1. B. Kumar, Industrial Engineering Khanna Publishers, 2013
- 2. M Mahajan, Industrial Engineering & Production Management, Dhanpat Rai, 2005
- 3. Martand Telsang, Industrial Engineering & Production Management, S. Chand, 2006
- 4. O. P. Khanna, Industrial Engineering and Management, Dhanpat Rai, 2010

References:

- 1. E. S. Buffa, Modern Production management, John Wiley, 1983
- 2. Grant and Ieven Worth, Statistical Quality Control, McGraw Hill, 2000
- 3. Introduction to work study ILO, Oxford And IBH Publishing, 2008
- 4. Ralph M Barnes, Motion and Time Study, Wiley, 1980

Course				
Module	Estd.	Hours	End Sem. Exam	
			Marks	
I	Introduction to Industrial Engineering - Evolution of modern Concepts in Industrial Engineering - Functions of Industrial Engineering - Field of application of Industrial Engineering Product Development and research- Design function - Objectives of design, - Manufacturing vs purchase- Economic aspects- C-V-P analysis – simple problems-Development of designs- prototype, production and testing - Human factors in design- Value Engineering.	7	15%	
Ш	Plant layout and Material handling- principles of material handling, Types of material handling equipments, Selection and application. Preventive and break- down maintenance - Replacement policy Methods of replacement analysis-Method of providing for depreciation- Determination of economic life - Simple problems.	7	15%	

FIRST INTERNAL EXAM			
III	Methods engineering: Analysis of work methods using different types of process chart and flow diagrams- Critical examination- Micro motion study and therbligs- Principles of motion economy – Work measurement-Performance ratingDetermination of allowances and standard time Job evaluation and merit rating - Objectives and principles of job evaluationWages and Incentives- Primary wage systems- Wage incentive plans.	7	15%
IV	Industrial relations- Psychological attitudes to work and working conditions - fatigue- Methods of eliminating fatigue- Effect of Communication in Industry-Industrial safety-personal protective devices-, causes and effects of industrial disputes- Collective bargaining- Trade union - Workers participation in management.	7	15%
	SECOND INTERNAL EXAM		
V	Production planning and control- Importance of planning - job, batch and mass production-Introduction and need for a new product- product life cycle Functions of production control - Routing , Scheduling, dispatching and follow up- Gantt charts. Inventory Control, Inventory models -Determination of EOQ and reorder level- simple problems- Selective inventory control techniques.	7	20%
VI	Quality control and Inspection- Destructive and non-destructive testing methods- process capability- Statistical quality control – causes of variation in quality- control charts for X and R. Reliability- causes of failures- Bath tub curveSystem reliability- life testing- Introduction to concepts of, TQM, ISO, Six Sigma and Quality circles (Brief description only).	7	20%
END SEMESTER EXAM			

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II. Each question carries 10 marks. Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV. Each question carries 10 marks. Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI. Each question carries 10 marks. Students will have to answer any four questions out of 6 (4x10 marks = 40 marks)

Course code	Course Name	L-T-P- Credits	Y Intro	ear of oduction	
ME 40	5 REFRIGERATION AND AIR CONDITIONING	2-1-0-3	20)16	
Prerequis	ite: ME205 Thermodynamics	A T A	A		
Course C 1. To 2. To 3. To 4. To 5. To Syllabus Introduc refrigerat Pofrigerat	Objectives: Distribution introduce vapour compression and vapour adsorption systems impart knowledge on refrigeration cycles and methods to familiarize the components of refrigeration systems introduce air conditioning systems know the applications of refrigeration and air conditioning ettion, Thermodynamics of refrigeration, Air refriger tion, Adiabatic demagnetization of paramagnetic salts, parts and their properties. Application of refrigeration Paramagnetic salts,	ems improve perfo systems ration system Vapour comp	ormance s, Vorte pression s	x tube systems,	
Air cond	itioning, Psychrometry, Air conditioning systems.	ingeration sys	tem com	jonents,	
Expected The stude i. ii. iii. iv. v. Text Boo 1. Arc 2. Arc 3. Bal 4. Ma Referenc 1. AS 2. Do 3. Sto	 Air conditioning, Psychrometry, Air conditioning systems. Expected outcome: The students will be able to i. Understand the principles refrigeration of air-conditioning and basic design considerations. ii. Carry out analysis of refrigeration cycles iii. Apply the concepts of indoor environmental comfort. iv. Perform psychrometric calculations, humidity control and analysis of air-conditioning processes v. Know the various applications of Refrigeration and air conditioning Text Books: 1. Arora C. P, Refrigeration and Air-Conditioning, McGraw-Hill, 2008 2. Arora S. C. and Domkundwar, Refrigeration and Air-Conditioning, Dhanpat Rai, 2010 3. Ballaney P. L, Refrigeration and Air-Conditioning, Khanna Publishers, New Delhi, 2014 4. Manohar Prasad, Refrigeration and Air-Conditioning, New Age International, 2011 References Books: 1. ASHRAE Handbook 2. Dossat. R. J, Principles of Refrigeration, Pearson Education India, 2002 				
	Course Plan			C	
Module	Contents		Hours	Sem. Exam Marks	
Ι	Introduction – Brief history and applications of a Thermodynamics of refrigeration- reversed Carnot cycle and refrigeration machines, Limitations of reversed Carnot of refrigeration- Air refrigeration systems- Reversed Jou craft refrigeration systems, simple bootstrap- Reger reduced ambient system	refrigeration. - heat pump ot cycle. Unit le cycle, Air herative and	6	15%	

п	Vortex tube refrigeration-Very low temperature refrigeration systems (concept only). Adiabatic demagnetization of paramagnetic salts Vapour compression systems-simple cycle - representation on T- s and P- h Diagrams. COP- Effect of operating parameters on COP – methods of improving COP of simple cycle- super- heating , under cooling, Liquid suction heat exchanger, actual cycle. FIRST INTERNAL EXAM	8	15%
III	Multi pressure systems - multi compression and multi evaporator, systems. Inter cooling - flash inter cooling and flash gas removal- Different combinations of evaporator and compressor for different applications, Cascade system Refrigerants and their properties-Eco-friendly Refrigerants, mixed refrigerants, selection of refrigerants for different applications Vapour absorption systems - Ammonia – water system - simple system- drawbacks-Lithium Bromide water system- Electrolux- comparison with vapour compression system- steam jet refrigeration.	7	15%
IV	Application of refrigeration- domestic refrigerators- water coolers- ice plants. Cold storages- food preservation methods- plate freezing, quick-freezing. Refrigeration system components- Compressors, condensers, expansion devices, evaporators. Cooling towers- Different types and their application fields- Refrigerant leakage and detection – charging of refrigerant – system controls. SECOND INTERNAL EXAM	6	15%
V	Air conditioning – meaning and utility, comfort and industrial air conditioning. Psychometric properties- saturated and unsaturated air, dry, wet and dew point temperature – humidity, specific humidity, absolute humidity, relative humidity and degree of saturation- thermodynamic equations- enthalpy of moisture- adiabatic saturation process -psychrometers. Thermodynamic wet bulb temperature, psychometric chart- Psychometric processes- adiabatic mixing- sensible heating and cooling- humidifying and dehumidifying, air washer – bypass factor- sensible heat factor-RSHF and GSHF line- Design condition- Apparent dew point temperature – Choice of supply condition, state and mass rate of dehumidified air quantity – Fresh air supplied –air refrigeration. Comfort air conditioning- factors affecting human comfort. Effective temperature – comfort chart. Summer air aonditioning factors affecting applied patientics	8	20%
VI	Air conditioning systems- room air conditioner- split system- packaged system-all air system-chilled water system. Winter air conditioning – factors affecting heating system, humidifiers. Year round air conditioning AC system controls-thermostat and humidistat. Air distribution systems- duct system and design- Air conditioning of restaurants, hospitals, retail outlets, computer center, cinema theatre, and other place of amusement. Industrial applications of air conditioning. END SEMESTER EXAM	7	20%

Time: 3 hrs

Use of approved Refrigerant tables permitted

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

2014

Course	code	Course Name	L-T-P-Credits	Year	of Intro	oduction		
ME	407	MECHATRONICS	3-0-0-3		2016			
Prerequisite: Nil								
Course (Objective	s:						
•	 To introduce the features of various sensors used in CNC machines and robots 							
•	 To study the fabrication and functioning of MEMS pressure and inertial sensors 							
•	To ena	ble development of hydraulic/pne	umatic circuit and PLC prog	grams fo	or simple	;		
	applica	ations		AL				
Syllabus	- A.	Y YE LITE IT	DOUTRI	3.4.				
Introduc	tion to 1	Mechatronics, sensors, Actuators	, Micro Electro Mechanic	cal Syst	tems (N	IEMS),		
Mechatr	onics in	Computer Numerical Control (CN	C) machines, Mechatronics	s in Rob	otics-El	ectrical		
drives, F	orce and	tactile sensors, image processing t	echniques, Case studies of r	viechatro	onics sys	stems.		
Expected	l outcom	e:						
The stude	Know	be able to	achetronice					
ii	Integra	the mechanical electronics control	and computer engineering i	in the d	esign of			
11.	mecha	tronics systems		in the u	csign of			
Text Boo	oks:							
1. Bolto	n W., M	echatronics: Electronic Control S	ystems in Mechanical and	Electric	al Engir	eering,		
Perso	n Educat	ion Limited, New Delhi, 2007			-	_		
2. Rama	achandrar	n K. P., G. K. Vijayaraghava <mark>n</mark> ,	M. S. Balasundaram, Me	echatron	nics: Int	egrated		
Mech	anical El	ectronic Systems, Wiley India Pvt.	Ltd., New Delhi, 2008.	_		-		
3. Saeec	B. Niku	i, Introduction to Robotics: Analys	sis, Systems, Applications, I	Person I	Educatio	n, Inc.,		
New .	Delhi, 20	06.			_			
Keterenc	es Books	S: Michael D. Histord, Introdu	otion to Machatnanica and	Марани	or and C			
1. David McGi	I G. Alda raw_Hill	Inc. USA 2003	ction to Mechatronics and	Measure	ement S	ystems,		
2 Gord	on $M M$	air Industrial Robotics Prentice H	all International LIK 1998					
2. Gold	Mechat	tronics Tata McGraw-Hill Publish	ing Company Ltd New De	lhi 2004	4			
4. Vijav	K. Vara	dan, K. J. Vinoy, S. Gopalakrish	nan, Smart Material System	ns and M	MEMS:	Design		
and D	Developm	ent Methodologies, John Wiley &	Sons Ltd., England, 2006.			0		
		Cours	e Plan	1				
				/		End		
Module		Cont	ents		Hours	Sem.		
						Exam		
						Marks		
	Introdu	ction to Mechatronics: Structure o	f Mechatronics system. Sen	sors				
	- Char	acteristics - I emperature, flow, p	ressure sensors. Displacem	ient,				
т	position	in and proximity sensing by	magnetic, optical, ultrasc	ontel	0	150/		
I	and abo	solute gray coded encoder Resolute	vers and synchros Piezoele	etric	0	13%		
	sensors	Acoustic Emission sensors Pr	inciple and types of vibra	tion				
	sensors		Field and types of viola					

п	Actuators: Hydraulic and Pneumatic actuators - Directional control valves, pressure control valves, process control valves. Rotary actuators. Development of simple hydraulic and pneumatic circuits using standard Symbols.	7	15%	
	FIRST INTERNAL EXAM	A.		
III	Micro Electro Mechanical Systems (MEMS): Fabrication: Deposition, Lithography, Micromachining methods for MEMS, Deep Reactive Ion Etching (DRIE) and LIGA processes. Principle, fabrication and working of MEMS based pressure sensor, accelerometer and gyroscope.	6	15%	
IV	Mechatronics in Computer Numerical Control (CNC) machines: Design of modern CNC machines - Mechatronics elements - Machine structure: guide ways, drives. Bearings: anti-friction bearings, hydrostatic bearing and hydrodynamic bearing. Re-circulating ball screws, pre-loading methods. Re-circulating roller screws. Typical elements of open and closed loop control systems. Adaptive controllers for machine tools. Programmable Logic Controllers (PLC) –Basic structure, input/ output processing. Programming: Timers, Internal Relays, Counters and Shift registers. Development of simple ladder programs for specific purposes.	8	15%	
SECOND INTERNAL EXAM				
V	 System modeling - Mathematical models and basic building blocks of general mechanical, electrical, fluid and thermal systems. Mechatronics in Robotics-Electrical drives: DC, AC, brushless, servo and stepper motors. Harmonic drive. Force and tactile sensors. Range finders: ultrasonic and light based range finders 	6	20%	
VI	 Robotic vision system - Image acquisition: Vidicon, charge coupled device (CCD) and charge injection device (CID) cameras. Image processing techniques: histogram processing: sliding, stretching, equalization and thresholding. Case studies of Mechatronics systems: Automatic camera, bar code reader, pick and place robot, automatic car park barrier system, automobile engine management system. 	7	20%	
	END SEMESTER EXAM	1	1	

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II. Each question carries 10 marks. Students will have to answer any three questions out of 4 (3X10 = 30 marks)

Part B

There should be 2 questions each from module III and IV. Each question carries 10 marks. Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course co	de Course Name	L-T-P- Credits	Year of Introduction
ME409	COMPRESSIBLE FLUID FLOW	2-1-0-3	2016
Prerequ	isite: ME205 Thermodynamics		1
Course Ob • To • To • To	jectives: Tamiliarize with behavior of compressible gas flow. Inderstand the difference between subsonic and supersonic flow Tamiliarize with high speed test facilities		
Syllabus Introductio Irreversibl Flow thro visualizati	on to Compressible Flow, Wave propagation, One dimensioned is discontinuity in supersonic flow, Flow in a constant area duct ugh constant area duct with heat transfer (Rayleigh Flow on and measurement, measurement in compressible flow, Window	onal steady ise t with friction), Compressib l tunnels	entropic flow, (Fanno Flow), ble flow field
Expected of The studen i. ii. iii. iv. Data book/	utcome: s will be able to Formulate and solve problems in one -dimensional steady com- isentropic nozzle flow, constant area flow with friction (Fanno with heat transfer (Rayliegh flow). Derive the conditions for the change in pressure, density and te normal shock. Determine the strength of oblique shock waves on wedge shape Know the various measuring instruments used in compressible	pressible flow flow) and con mperature for ed bodies and o flow	including: stant area flow flow through a concave corners
1. Yahya S 2. Balacha	M., Gas Tables, New Age International, 2011 ndran P., Gas Tables, Prentice-Hall of India Pvt. Limited, 2011	1	
 Text Book 1. Balacha 2. Rathaki 3. Yahya S Internat 	ndran P., Fundamentals of Compressible Fluid Dynamics, PHI ishnan E., Gas Dynamics, PHI Learning, 2014 M., Fundamentals of Compressible Flow with Aircraft and R ional Publishers, 2003	Learning. 200 ocket Propulsi	06 Ion, New Age
References 1. Ander 2. Shapiro	Books : son, Modern compressible flow, 3e McGraw Hill Education of Dynamics and Thermodynamics of Compressible Flow – Vo	on, 2012 11., John Wild	ey & Sons,1953

Course Plan					
Module	Contents	Hours	End Sem. Exam		
	A DI A DIDI II IZALA	N . A	Marks		
Ι	Introduction to Compressible Flow- Concept of continuum-system and control volume approach- conservation of mass, momentum and energy- stagnation state- compressibility-Entropy relations. Wave propagation- Acoustic velocity-Mach number-effect of Mach number on compressibility- Pressure coefficient-physical difference between incompressible, subsonic, sonic and supersonic flows- Mach cone-Sonic boom-Reference velocities- Impulse function-adiabatic energy equation-representation of various flow regimes on steady flow adiabatic ellipse.	8	15%		
Π	One dimensional steady isentropic flow- Adiabatic and isentropic flow of a perfect gas- basic equations- Area-Velocity relation using 1D approximation-nozzle and diffuser-mass flow rate-chocking in isentropic flow-flow coefficients and efficiency of nozzle and diffuser- working tables-charts and tables for isentropic flow- operation of nozzle under varying pressure ratios –over expansion and under expansion in nozzles.	7	15%		
	FIRST INTERNAL EXAM				
ш	Irreversible discontinuity in supersonic flow- one dimensional shock wave- stationary normal shock- governing equations- Prandtl- Meyer relations- Shock strength- Rankine- Hugoniot Relation- Normal Shock on T-S diagram- working formula- curves and tables-Oblique shock waves - supersonic flow over compression and expansion corners (basic idea only).	7	15%		
IV	Flow in a constant area duct with friction (Fanno Flow) – Governing Equations- Fanno line on h-s and P-v diagram- Fanno relation for a perfect gas- Chocking due to friction- working tables for Fanno flow- Isothermal flow(elementary treatment only)	6	15%		
	SECOND INTERNAL EXAM				
V	Flow through constant area duct with heat transfer (Rayleigh Flow)- Governing equations- Rayleigh line on h-s and P-v diagram- Rayleigh relation for perfect gas- maximum possible heat addition- location of maximum enthalpy point- thermal chocking- working tables for Rayleigh flow.	6	20%		
VI	Compressible flow field visualization and measurement- Shadowgraph-Schlieren technique- interferometer- subsonic compressible flow field -measurement (Pressure, Velocity and Temperature) – compressibility - correction factor- hot wire anemometer- supersonic flow measurement- Shock tube-Rayleigh Pitot tube- wedge probe- stagnation temperature probe- temperature recovery factor –Kiel probe - Wind tunnels – closed and open type- END SEMESTER EXAM	8	20%		

2014

ME431 MECHANICAL ENGINEERING LAB. 0-0-3-1 2016 Prerequisite : ME302 Heat and mass transfer, ME304 Dynamics of machinery Course Objectives:
Prerequisite : ME302 Heat and mass transfer, ME304 Dynamics of machinery Course Objectives: • To conduct the various heat transfer experiments • To practice calibration of thermometer and pressure gauges • To do experiments on dynamics Syllabus List of experiments: Hear transfer 1. Determination of LMTD and effectiveness of parallel flow, Counter flow and cross flow heat exchangers(double pipe heat exchanger) 2. Determination of heat transfer coefficients in free convection(free convection apparatus) 3. Determination of thermal conductivity of solids(composite wall) 5. Determination of thermal conductivity of powder 6. Determination of Thermal conductivity of liquids 7. Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) 8. Determination of Stefan Boltzman constant (Refrigeration Test rig)
 Course Objectives: To conduct the various heat transfer experiments To practice calibration of thermometer and pressure gauges To do experiments on dynamics Syllabus List of experiments: Hear transfer Determination of LMTD and effectiveness of parallel flow, Counter flow and cross flow heat exchangers(double pipe heat exchanger) Determination of heat transfer coefficients in free convection (free convection apparatus) Determination of heat transfer coefficients in forced convection (forced convection apparatus) Determination of thermal conductivity of solids(composite wall) Determination of thermal conductivity of powder Determination of Thermal conductivity of liquids Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 To conduct the various heat transfer experiments To practice calibration of thermometer and pressure gauges To do experiments on dynamics Syllabus List of experiments: Hear transfer Determination of LMTD and effectiveness of parallel flow, Counter flow and cross flow heat exchangers(double pipe heat exchanger) Determination of heat transfer coefficients in free convection (free convection apparatus) Determination of thermal conductivity of solids(composite wall) Determination of thermal conductivity of powder Determination of Thermal conductivity of liquids Determination of thermal conductivity of solids(rapparatus) Betermination of thermal conductivity of liquids Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 To practice calibration of thermometer and pressure gauges To do experiments on dynamics Syllabus List of experiments: Hear transfer Determination of LMTD and effectiveness of parallel flow, Counter flow and cross flow heat exchangers(double pipe heat exchanger) Determination of heat transfer coefficients in free convection(free convection apparatus) Determination of thermal conductivity of solids(composite wall) Determination of thermal conductivity of powder Determination of thermal conductivity of liquids Determination of stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 To do experiments on dynamics Syllabus List of experiments: Hear transfer Determination of LMTD and effectiveness of parallel flow, Counter flow and cross flow heat exchangers(double pipe heat exchanger) Determination of heat transfer coefficients in free convection(free convection apparatus) Determination of heat transfer coefficients in forced convection (forced convection apparatus) Determination of thermal conductivity of solids(composite wall) Determination of thermal conductivity of powder Determination of Thermal conductivity of liquids Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 Syllabus List of experiments: Hear transfer Determination of LMTD and effectiveness of parallel flow, Counter flow and cross flow heat exchangers(double pipe heat exchanger) Determination of heat transfer coefficients in free convection(free convection apparatus) Determination of heat transfer coefficients in forced convection (forced convection apparatus) Determination of thermal conductivity of solids(composite wall) Determination of thermal conductivity of powder Determination of Thermal conductivity of liquids Determination of emissivity of a specimen (emissivity apparatus) Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 List of experiments: Hear transfer Determination of LMTD and effectiveness of parallel flow, Counter flow and cross flow heat exchangers(double pipe heat exchanger) Determination of heat transfer coefficients in free convection(free convection apparatus) Determination of heat transfer coefficients in forced convection (forced convection apparatus) Determination of thermal conductivity of solids(composite wall) Determination of thermal conductivity of powder Determination of Thermal conductivity of liquids Determination of emissivity of a specimen (emissivity apparatus) Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 Hear transfer Determination of LMTD and effectiveness of parallel flow, Counter flow and cross flow heat exchangers(double pipe heat exchanger) Determination of heat transfer coefficients in free convection(free convection apparatus) Determination of heat transfer coefficients in forced convection (forced convection apparatus) Determination of thermal conductivity of solids(composite wall) Determination of thermal conductivity of powder Determination of Thermal conductivity of liquids Determination of emissivity of a specimen (emissivity apparatus) Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 Determination of LMTD and effectiveness of parallel flow, Counter flow and cross flow heat exchangers(double pipe heat exchanger) Determination of heat transfer coefficients in free convection(free convection apparatus) Determination of heat transfer coefficients in forced convection (forced convection apparatus) Determination of thermal conductivity of solids(composite wall) Determination of thermal conductivity of powder Determination of Thermal conductivity of liquids Determination of emissivity of a specimen (emissivity apparatus) Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 exchangers(double pipe heat exchanger) 2. Determination of heat transfer coefficients in free convection(free convection apparatus) 3. Determination of heat transfer coefficients in forced convection (forced convection apparatus) 4. Determination of thermal conductivity of solids(composite wall) 5. Determination of thermal conductivity of powder 6. Determination of Thermal conductivity of liquids 7. Determination of emissivity of a specimen (emissivity apparatus) 8. Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) 9. Study and performance test on refrigeration (Refrigeration Test rig)
 Determination of heat transfer coefficients in free convection(free convection apparatus) Determination of heat transfer coefficients in forced convection (forced convection apparatus) Determination of thermal conductivity of solids(composite wall) Determination of thermal conductivity of powder Determination of Thermal conductivity of liquids Determination of emissivity of a specimen (emissivity apparatus) Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 Determination of heat transfer coefficients in forced convection (forced convection apparatus) Determination of thermal conductivity of solids(composite wall) Determination of thermal conductivity of powder Determination of Thermal conductivity of liquids Determination of emissivity of a specimen (emissivity apparatus) Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 Determination of thermal conductivity of solids(composite wall) Determination of thermal conductivity of powder Determination of Thermal conductivity of liquids Determination of emissivity of a specimen (emissivity apparatus) Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 Determination of thermal conductivity of powder Determination of Thermal conductivity of liquids Determination of emissivity of a specimen (emissivity apparatus) Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 Determination of Thermal conductivity of hquids Determination of emissivity of a specimen (emissivity apparatus) Determination of Stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 Betermination of emissivity of a "specified (emissivity apparatus)" Betermination of Stefan Boltzman constant (Stefan Boltzmann apparatus) Study and performance test on refrigeration (Refrigeration Test rig)
 Study and performance test on refrigeration (Refrigeration Test rig)
y. Study and performance test on reingeration (Reingeration rest ng)
10 Study and performance test air conditioning equipment(air conditioning test rig)
11. Performance study on heat pipe(Heat pipe)
12. Calibration of Thermocouples
13. Calibration of Pressure gauge
Dynamics
14. Whirling of shaft
15. Gyroscope
16. Universal governor apparatus
17. Free vibration analysis
18. Forced vibration analysis
Note: Minimum 9 experiments in heat transfer and 3 experiments in dynamics are mandatory
Expected outcome:
The students will be able to
1. Conduct experiments to determine thermal conductivity of materials
2. Determine heat transfer coefficient, LMTD etc
3. Do calibration of thermometers and pressure gauges
4. Demonstrate the effect of unbalances resulting from rotary motions
5. Visualise the effect of dynamics on vibrations in single and multi degree of freedom system
b. Demonstrate the working principle of governor /gyroscope and demonstrate the effect of forces and

Course code	Course Name	L-T-P- Credits	Ye Intro	ear of duction
ME461	Aerospace Engineering	3-0-0-3	2	016
-	Prerequisite : Nil		1	
Course O	bjectives: :			
• To	understand the fundamentals of aerospace engineering		1	
• To	provide an understanding of flight instruments		61	
	TECHNOLOGI	CA	1	
Syllabus:	IECHNOLOGI	A	L	
The atmos	sphere, airfoil theory, 2D, 3D or Finite aero foils Prope	llers, Aircr	aft perfe	ormance,
Flight Inst	ruments, stability of aircrafts, wind tunnel testing	Y I		
Expected	Outcomes:			
The stude	its will be able to			
j	. Identify, formulate and solve aerospace engineering pr	oblems		
i	Perform analysis of flight dynamics of aircrafts			
Text book	s:			
1. A.	C. Kermode, Mechanics of flight, Prentice Hall, 2007			
2. An	derson, Fundamentals of Aerodynamics, McGraw-Hill, 20	1002		
3. EF	IJ Pallett, Aircraft Instruments and Integrated systems, Long	gman,1992		
Kelerence	DOOKS:	Hodder &	Stought	on 1977
1. 110	COURSE PLAN	moduler &	Stought	511,1777
				E- J
				Ena Som
Module	Contents]	Hours	Seill. Evam
			/	Marks
	Total A			
	The atmosphere-characteristics of troposphere, stratos	phere,		
	thermosphere, and ionosphere- pressure, temperature and	density		
т	variations in the atmosphere. Application of dimensional a	analysis ro foils	Q	150/
1	-Nomenclature and classification- pressure distribute	tion in	0	15 70
	inviscid and real flows- momentum and circulation th	eory of		
	aerofoil- characteristics.			
		· ·		
	3D or Finite aero foils – effect of releasing the wingtip	s- wing		
	system lifting line theory-wing load distribution – aspe	ct ratio		
II	induced drag calculation of induced drag from more	mentum	7	15%
	considerations. Skin friction and from drag- changes i	n finite		
	wing plan shape			
FIRST INTERNAL EXAMINATION				

III	Propellers – momentum and blade element theories –propeller coefficients and charts. Aircraft performance-straight and level flight –power required and power available graphs for propeller and jet aircraft	6	15%	
IV	Gliding and climbing –rate of climb-service and absolute ceilings-gliding angle and speed of flattest glide takeoff and landing performance – length of runway required- aircraft ground run- circling flight – radius of tightest turn-jet and rocket assisted take –off high lift devices-range and endurance of airplanes- charts for piston and jet engine aircrafts.	1	15%	
SECOND INTERNAL EXAMINATION				
V	Flight Instruments-airspeed indicator, calculation of true air speed-altimeter, gyrohorizon -direction indicator-vertical speed indicator –turn and back indicator-air temperature indicator. (Brief description and qualitative ideas only). Ideas on stability- static and dynamic stability- longitudinal, lateral and directional stability- controls of an aero plane- aerodynamic balancing of control surfaces- mass balancing (Qualitative ideas only).	7	20%	
V1	Principles of wind tunnel testing –open and closed type wind tunnels-wind tunnel balances supersonic wind tunnels. Study of subsonic, Transonic, and supersonic aircraft engines (Description with figures Only).Elementary ideas on space travel-calculation of earth orbiting and escape velocities ignoring air resistance and assuming circular orbit.	7	20%	
	FND SEMESTER EXAMINATION			

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name I	L-T-P- Credits	Y Inti	lear of coduction		
ME462	Propulsion Engineering 3	-0-0-3		2016		
	Prerequisite: Nil		L			
Course O	bjectives:					
• To	give an overview of various air craft engines, rocket engines	and their	appli	cations.		
• To	provide knowhow on tools to analyze various rocket propulsi	on.				
• To	know the testing of rocket engines.	- A	1			
Syllabus:		A				
Fundamen analysis o Performan	ntals of Propulsion, Types of propulsive devices, Efficien f turbojet, Turbojet engine components, Rocket propulsion, ace, Testing of rockets	ncies, 7 Types o	Thermo f rock	odynamics ets, Flight		
Expected	Outcomes:					
The studen	ts will be able to					
1. Per	rform thermodynamic analysis of aircraft engines	a				
$\begin{array}{ccc} 11. & Ca \\ \vdots \vdots & Ea \end{array}$	rry out performance analysis of aircraft systems and compon	ents				
Text book						
1 K	Ramamurthi Rocket Propulsion Laxmi Publications 2016					
2. Sa	eed Farokhi, Aircraft Propulsion, Wiley, 2e, 2014					
Reference	books:					
1. G.	P. Sutton and Oscar Biblarz, Rocket Propulsion elements- Joh	n Wiley	& S01	ns, 2013		
2. J N	Mattingly, H von Ohain, Elements of Propulsion: Gas Turbi	nes and	Rocke	ets, AIAA,		
20	06					
3. Ph	ilip Hill, Carl Peterson: Mechanics and Thermodynamics of Pr	opulsior	n, Pear	son, 2014		
4. Ro	nald D Flack, Fundamentals of Jet Propulsion with A	pplicatio	ons, (Cambridge		
Un	iversity Press, 2005		/			
	COURSE PLAN					
	Estu.	1		End		
Madula	Contonto	п		Sem.		
Module	Contents	п	ours	Exam.		
				Marks		
	Fundamentals of Propulsion- Classification types of propuls	ive				
I	devices-Airscrew, Turbojet, Turboprop, turbofan, Turbosh	aft,	7	15%		
-	Ramjet, Scramjet, Pulsejet and Rocket engines. Comparat	ive	-			
	study of performance characteristics applications.	- 6				
т	Ineory of propulsion – Inrust, thrust power and efficiencies	OI inc	7	150/		
	cycle Propellers: Types of propellers	me	1	15%0		
	FIRST INTERNAL FYAMINATION	<u>I</u>		<u> </u>		
FIRST INTERNAL EXAMINATION						

III	Turbojet engine components- air intakes, Compressors, Combustion chambers, turbines, nozzles turbine and compression matching – Thrust augmentation.	7	15%
IV	Rocket propulsion- general operating principles of chemical, electrical nuclear and solar rockets. Chemical Rockets- Classification. Performance parameters for chemical rockets and their relationship, Energy and efficiencies, simple problems, Solid propellants- Types- burning rate- grain Configurations, - Classification- Typical fuels and oxidizers, properties and specifications, Selection.	M	15%
V	Liquid propellant feed systems, injectors, Starting and ignition, Igniters liquid propellant, Precautions in propellant handling. Hybrid Rockets combustion processes in SPR and LPR combustion instability- Control of instabilities –Cooling of Rocket motors	7	20%
V1	Flight Performance- Velocity and attitude in simplified vertical Refractory staging of rockets. Rocket Testing- Test facilities and safeguards. Measurement System Terminology, Flight Testing.	7	20%

END SEMESTER EXAMINATION

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course o	code	Course Name	L-T-P- Credits	Year of Introduction				
ME46	63	Automobile Engineering	3-0-0-3	2016				
Pre requi	Pre requisites: Nil							
Course of	Course objectives							
 To To To 	 To know the anatomy of automobile in general To understand the working of different automotive systems and subsystems To update the latest developments in automobiles 							
Syllabus:-	- Engin	e, clutch, transmission, steering, brakes, suspension an	d aerodyna	mics				
COURSE	OUT	COMES:						
The stude	nts will	be able to:						
i. Pra	acticall	y identify different automotive systems and subsystem	s.					
ii. Ur	ndersta	nd the principles of transmission, suspension, steering	and brakin	g systems of an				
au	tomobi	le						
111. De	evelop a	a strong base for understanding future developments in	the autom	obile industry				
Text Bool	ks		6					
1. Gupta	R.B. A	uto design, Satya Prakash, New Delhi, 2015						
2. Heinz	Heisle	r, Advanced engine technology, Butterworth-Heinema	nn,1995					
3. Heinz	Heisle:	r, Advanced vehicle technology, Society of Automotiv	e Engineer	s Inc, 2002 Thornes, 2004				
5. Tom I	Denton,	Automobile mechanical and electrical systems, Butter	worth-Hei	nemann, 2011				
		Course Plan						
Module		Contents	Hours	End Sem. Exam. Marks				
	Piston	: - material for piston, clearances, piston rings, types,	1					
	Piston rod, c	for IC engine, piston rings, piston pin, connecting rank shaft, crank pin, cam shaft, valves, fly wheel,	1					
T	stress	in a fly wheel rim, simple problems.	1	15%				
-	Petrol and ca	fuel injection systems: - comparison petrol injection arbureted fuel supply systems- comparison –multiport	1					
	fuel i (CRD	njection (MPFI) and common rail direct injection I) systems.	1					
	Super engine lag.	charging systems: fundamentals, naturally aspirated es and supercharged engines– Turbo charger, turbo	1					

	Hybrid cars, safety overview -Formula-I engine technology: overview, electrical technology, brakes, transmission technology	1	
II	Friction clutch:- fundamentals, driven plate inertia, driven plate transmitted torque, driven plate wear –angular driven plate cushioning and torsional damping, clutch friction materials, when clutch is worn out.		
	Pull type diaphragm clutch, multiple diaphragm clutch, multi-plate hydraulically operated automatic transmission clutch, semi centrifugal clutch, fully automatic centrifugal clutch, and integral single plate diaphragm clutch.	AI	15%
	Need of gear box, resistance to vehicle motion, power to weight ratio, speed operating range-five speed and reverse	1	
	sliding mesh, constant mesh, and synchromesh gear boxes:- gear synchronization and engagement.	1	
	Over drives – hydrodynamic fluid couplings: - efficiency and torque capacity – fluid friction coupling- torque	1	
	CONVERTERS.	1	
	Steering:-basic principle of a steering system:- swinging	1	
	beam system – Ackermann –over steer and under steer –	1	
	slip angle, camber, caster etc.	1	
	Swivel axis inclination: centre point steering, camber, king pin inclination, negative offset, caster, toe-in and toe-out	1	
III	Steering gear box: - fundamentals screw and nut steering gear mechanism-worm and roller type steering gear box –	1	15%
	Re-circulating ball nut and rocker lever, re-circulating ball rack and sector steering gear box– need of power assisted	1	
	steering.	1	
	External direct coupled and rack and pinion and integrated steering power cylinder, power assisted steering lock limitations	1	
IV	Suspension: - suspension geometry, terminology- Macpherson strut friction and spring offset - suspension roll centers:-roll centers, roll axis, roll centre height, short swing and long arm suspension transverse double	1	
	wishbone, parallel trailing double arm and vertical pill strut suspension, Macpherson strut suspension, semi-trailing arm rear suspension, telescopic suspension.	1	15%
	High load beam axle leaf spring, sprung body roll stability. Rear axle beam suspension- body roll stability analysis:- body roll couple, body roll stiffness, body over turning couple	1	

	Body weight transfer body direct weight transfer couple		
	body weight transfer, body ander weight transfer eouple,	1	
	lateral force distribution	1	
	Anti roll hars and roll stiffness: anti roll har function		
	And fon bars and fon summess and fon bar function,		
	operating principle, anti roll bar action caused by the body	1	
	rolling, single wheel lift -rubber spring bumper:-bump stop	AA	
	function and characteristics, axis inclination.	A N	
	Rear suspension: - live rigid axle suspension, non drive rear	1 11 1	
	suspension- swing arm rear wheel drive independent	1	
	suspension.	AL	
	Low pivot split axle coil spring wheel drive independent	e	-
	suspension, trailing and semi trailing arm rear wheel drive	1	
	independent suspension		15%
	Transverse double link arm rear wheel drive independent		
	mansverse double link and lear wheel suspension	1	
	Suspension, De Dion axie real wheel suspension -	1	
	Hydrogen suspension, nydro-pneumatic automatic neight		
	correction suspension.		
	SECOND INTERNAL EXAMINATION		
	Brakes:- mechanical and hydraulic brakes (review only) –		
	properties of friction lining and pad materials, efficiency,	1	
	stopping distance, theory of internal shoe brake, equations –	6	
	effect of expanding mechanism of shoes on total braking		
	torque equations	1	
	Braking vehicles: brakes applied on rear front and all four		
	blaking venicles blakes applied on fear, none and an four	1	
	wheels, equations –calculation of mean mining pressure and		
	neat generation during braking operation, equations. –	1	
	braking of vehicle moving on curved path, simple	1	
V	problems.		20%
	Anti Lock Braking system (ABS):- need and advantages of		
	ABS – hydro-mechanical ABS - hydro-electric ABS -	1	
	air-electric ABS.		
	Brake servos: - operating principle, vacuum servo - direct		
	acting suspended vacuum assisted brake servo unit	1	
	operation - hydraulic servo assisted brake systems.		
	Pneumatic operated disc brakes – air operated brake		
	systems: - air over hydraulic brake system - Three line	1	
	brake system.— electronic-pneumatic brakes	-	
	Aarodynamia drag: praesure drag air registance opposing		
	motion of a vahiala equations offer flow welks drag	1	
	mouon of a venicle, equations, after now wake, drag		
	coefficients, various body snapes, base drag, vortices,	1	
V1	training vortex drag, attached transverse vortices.		20%
	Aerodynamic lift:-lift coefficients, vehicle lift, underbody	1	
	floor height versus aerodynamic lift and drag, aerofoil lift	1	
	and drag, front end nose shape.	1	
	Car body drag reduction:-profile edge chamfering, bonnet	1	

slope and wind screen rake, roof and side panel chamfering,	
rear side panel taper, underbody rear end upward taper, rear	
end tail extension, underbody roughness.	
Aerodynamic lift control:- underbody dams, exposed wheel	
air flow pattern, partial enclosed wheel air flow pattern, rear	1
end spoiler, negative lift aerofoil wings.	
After body drag: - square back drag, fast back drag, hatch back drag, notch back drag.	M
END SEMESTER EXAMINATION	AI

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks = 40 marks)

2014

Course code	Course Name	L-T-P- Credits	Ye Intro	ar of duction
ME464	Robotics and Automation	3-0-0-3	2	016
	Prerequisite : Nil			
Course C	bjectives: :			
• To	provide the concepts of vision system and image processir	ıg	A	
• To	equip students to write programs for automatic functioning	of a robot	V.1	_
• To	familiarise various robot sensors and their perception princ	iples that e	enable a r	robot
Syllabus:	Constitute Contains West Freedom to the Constitute Cons	D.	. Inima	
End Effor	tors Grippors Sonsors and machine vision. Robot kinemat	ation, Rob	ot arroar	systems,
Application	on of robots in machining	ics and fou	ot progr	ammig,
Expected The stude	Outcomes: nts will be able to			
i. Be	come familiar with the history, concept, development and k	ey compor	nents of 1	obotics
te	hnologies			
ii. Cl	assify and characterize the robots based on the configuration	n and work	volume	
111. Sc	Ive the problems related to robot design and control		_	
Text boo	KS:			
1. In	lustrial Robots, Yu.Kozyrev, Mir Publishers			
2. Ja	nakiraman.P.A., Robotics and Image Processing, Tata McG	aw-Hill, 1	995	· .
3. M	P.Groover, Industrial Robotics – Technology, Progra	mming ar	nd App	lications,
	ram Koren, Robotics for Engineers, McGraw-Hill Book Co	1992		
Referenc	es:	., 1772		
1. Fu	.K.S. Gonzalz.R.C., and Lee C.S.G., Robotics Contr	rol, Sensi	ng, Vis	ion and
In	elligence, McGraw-Hill Book Co., 1987			
2. K.	S.Fu., R.C.Gonalez, C.S.G.Lee, Robotics Control sensir	ig, Vision	andInte	lligence,
M	Craw Hill International Edition, 1987			
3. R1	chard D. Klafter, Thomas A. Chmielewski and Michael N	egin, Rob	otic eng	ineering-
	COURSE PLAN	1		
				End
				Sem.
Module	Contents 4		Hours	Exam.
				Marks
	Definition – Co-ordinate Systems, Work Envelope, ty	pes and		l
Ŧ	classification – Specifications – Pitch, Yaw, Roll, Joint N	otations,	-	150/
1	speed of Motion, Pay Load – Basic robot motions - Point control Continuous path control Pohot Parts and Their E	to point	1	15%
	– Need for Robots Different Applications	unctions		1
	Robot drive systems: Pneumatic Drives – Hydraulic I	Drives –		
Π	Mechanical Drives – Electrical Drives – D.C. Servo	Motors,	7	15%
	Stepper Motor, A.C. Servo Motors - Salient Features, App	lications		1

	and Comparison of all these Drives.			
	FIRST INTERNAL EXAMINATION	11		
III	End Effectors – Grippers – Mechanical Grippers, Pneumatic and Hydraulic Grippers, Magnetic Grippers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations	7	15%	
IV	Sensors and machine vision: Requirements of a sensor, Principles and Applications of the following types of sensors – Position of sensors (Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders), Range Sensors (Triangulation Principle, Structured, Lighting Approach, Laser Range Meters).		15%	
	SECOND INTERNAL EXAMINATION			
V	 Proximity Sensors(Inductive, Capacitive, and Ultrasonic), Touch Sensors, (Binary Sensors, Analog Sensors), Wrist Sensors, Compliance Sensors, Slip Sensors. Camera, Frame Grabber, Sensing and Digitizing Image Data – Signal Conversion, Image Storage, Lighting Techniques. Robot kinematics and robot programming: Forward Kinematics, Inverse Kinematics and Differences; Forward Kinematics and Reverse Kinematics of Manipulators with Two Degrees of Freedom (In 2 Dimensional) – Deviations and Problems. 	7	20%	
V1	Teach Pendant Programming, Lead through programming, Robot programming Languages –VAL Programming – Motion Commands, Sensor Commands, End effecter commands, and Simple programs. Industrial Applications: Application of robots in machining, welding, assembly, and material handling.	7	20%	
END SEMESTER EXAMINATION				
Maxim	Question Paper Pattern Im marks: 100 Tim	e: 3 hrs		

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

2014

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)Note: in all parts each question can have a maximum of four sub questions

Course code	Course Name	L-T-P- Credits	Ye Intro	ar of duction
ME465	Industrial Hydraulics	3-0-0-3	2	016
	Prerequisite : Nil			
Course Ol	ojectives: :			
1. To 2. To	introduce various fluid power systems get knowledge on fluid power circuits	AA	1	
Syllabus: Introduction and rams, temperatur	on to fluid power, Properties of fluids. Selection of fluids, Pu Fluid power pumping systems and components, Hy e control, Piping systems, Control circuits	umps, Hy draulic A	draulic o Actuator	cylinders s, Fluid
Expected The studen 1. To 2. To 3. To	Outcomes: ts will be able understand the various components used in fluid power system select the suitable system for a particular application know the various fluid circuits used in hydraulic systems	tems		
Text book	s:			
 B. Lall, Oil Hydraulics, International Literature Association D. A. Pease, Basic Fluid Power, Prentice Hall,1986 J. J. Pipenger, <u>Tyler Gregory Hicks</u>, Industrial Hydraulics, McGraw Hill,1979 Pinches, Industrial Fluid Power, Prentice Hall,1989 R.K. Bansal, Fluid Mechanics, Laxmi Publication (P) Ltd.,2017 Reference: ISO - 1219, Fluid Systems and components, Graphic Symbols Andrew A. Parr. Hydraulics and Pneumatics, Elsevier, 1999 				
3. Mic	chael J. Prinches and Ashby J. G, Power Hydraulics, Prentice	Hall,198	88	
4. 18	course pi AN		-	
	COUKSE PLAN			
Module	ESTO. Contents	/	Hours	End Sem. Exam. Marks
I	Introduction to fluid power – Hydraulics and Pneumatics s – Fluid power systems – Fundamentals of fluid mech Properties of fluids. Selection of fluids, additives, eff temperature and pressure on hydraulic fluids, Measuren physical parameters – Hydraulic symbols	ystems anics , fect of nent of	7	15%
п	Pumps: Types , classification , principle of worki constructional details of vane pump, gear pumps, radial and plunger pumps, Power and efficiency calculations, char, C selection of pumps for hydraulic power transmission	ing & 1 axial Curves,	7	15%

III	- Filter in hydraulic circuits. Loading and replacement of filter elements – Materials for filters	7	15%
IV	Hydraulic Actuators (i) Linear and Rotary. (ii) Hydraulic motors - Types- Vane, Gear, Piston types, radial piston. (iii) Methods of control of acceleration, deceleration. (iv) Types of cylinders and mountings. (v) Calculation of piston velocity, thrust under static and dynamic applications, considering friction, inertia loads. (vi) Design considerations for cylinders. Cushioning of cylinders.	7	15%
	SECOND INTERNAL EXAMINATION	Beer	
V	Fluid temperature control – Fluid pressure control –control valves – Sequence -valve – Counterbalance valve-unloading valve – Friction control valve – Servo systems, Hoses & Pipes : Types , materials , pressure drop in hoses/pipes. Hydraulic piping connections.	7	20%
V1	Simple reciprocating, Regenerative, Speed control (Meter in, Meter out and bleed off), Sequencing, Synchronization, transverse and feed, circuit for riveting machine, automatic reciprocating, fail safe circuit, counter balance circuit, actuator locking, circuit for hydraulic press, unloading circuit (Numerical treatment), motor breaking circuit	7	20%

END SEMESTER EXAMINATION

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	e Course Name	L-T-P- Credits	Ye Intro	ar of duction
ME466	Computational Fluid Dynamics	3-0-0-3	2	016
Prerequi	site : ME203 Mechanics of fluids			
Course C	Objectives: :	* * *		
• To	o introduce governing equations of viscous fluid flows	IΔΛ	A	
• To	o introduce numerical modelling and its role in the field of	fluid flow an	id heat t	ransfer
• To	b enable the students to understand the various disc	retization m	ethods,	solution
pr	ocedures and turbulence modelling.	C.11 . C. C	1 61	
• 10	o create confidence to solve complex problems in the	mend of mun	1 HOW	and neat
Svllahus	inster using high speed computers.	1		
Julia				
Introduct	ion to CFD, Governing equations, Steady and unsteady fl	ows, Analyti	cal solu	tion of a
Different	tures of turbulance models Grid generation Press	sentation of	docour	It HOWS,
incompre	ssible flows Typical results of CED analysis	ure-velocity	decoup	ing tor
			_	
Expected	Outcomes:			
i c	nus will be able to	low and heat	transfo	
1. 0	asp numerical moderning and its role in the field of fluid in only the various discretization methods solution procedu	res and turb	ulence r	nodeling
to	solve flow and heat transfer problems	ites and turb	uteffee 1	nouening
iii. K	now established engineering methods to solve complex e	ngineering p	roblem	
Text boo	<u> </u>	0 01		
1 De	tankar Subas V Numerical Heat Transfer and Eluid Elow	Taylor & Fr	ancis 10	080
1.12 2 V	ersteeg H K & Malalasekera W An introduction to Comp	, Taylor & T	id Dyna	mics
Le Le	ongman.2008			inics,
Referenc	e books:	a	1.51.1	
I. A	nderson Dale A., Tannehill John C. & Pletcher Richard H.,	Computation	hal Fluic	L
	letcher C A L Computational Techniques for Eluid Dynam	nice I Spring	or Vorl	og 108/
2. 1	icterier C.A.J., Computational Teeninques for Fluid Dynam	ines i, spring		ig,1704
				F 1
	2014	1		End
Module	Contents		Hours	Sem.
				Exam. Morks
	Introduction to CED Historical background an	nlications		1 1121 KS
	advantages. Basic steps of CFD. Meshes. Struct	ured and		
Ι	unstructured mesh, Classification of structured grids.	Governing	7	15%
	equations: continuity and momentum equations. Ec	uation of		
	transport of a scalar. Potential, Euler and Navier-Stokes e	quations		
п	Steady and unsteady flows. Typical boundary condition	ns such as	7	150/-
11	Dirichlets and Neumann conditions. TDMA method.,	Numerical	,	13 /0

problem up to four unknowns using TDMA.					
Cell centred finite volume discretisation of terms of governing					
equations such as time derivative, convective and diffusion.					
FIRST INTERNAL EXAMINATION					
Analytical solution of a one dimensional convection diffusion					
equation. Upwind, central and blended difference approximations	-	150/			
for convection term, QUICK scheme. Implicit, explicit and Crank-		15%			
Nicolson schemes	V1				
Statistical representation of turbulent flows: Homogeneous	T.				
turbulence and isotropic turbulence, General Properties of turbulent	-	1 = 0 /			
quantities, Reynolds average Navier stokes (RANS) equation,	1	15%			
Closure problem in turbulence					
SECOND INTERNAL EXAMINATION					
Turbulence modeling, Different types of turbulence models:					
advantages and disadvantages. Structured Grid generation –	7	20%			
Unstructured Grid generation–Mesh refinement – Adaptive mesh					
Pressure-velocity decoupling for incompressible flows - SIMPLE					
and PISO algorithms. Density based solutions for compressible					
flow, TVD and Van-leerschemes for compressible flow. Typical					
results of CFD analysis. Stream lines, method for generating stream	7	20%			
line, velocity contours and pressure contours, Method of drawing a					
velocity vector. Solution of Lagrangian coordinates of a fluid					
particle. Commercial CFD packages.	END SEMESTED EVAMINATION				
-	problem up to four unknowns using TDMA. Cell centred finite volume discretisation of terms of governing equations such as time derivative, convective and diffusion. FIRST INTERNAL EXAMINATION Analytical solution of a one dimensional convection diffusion equation. Upwind, central and blended difference approximations for convection term, QUICK scheme. Implicit, explicit and Crank- Nicolson schemes Statistical representation of turbulent flows: Homogeneous turbulence and isotropic turbulence, General Properties of turbulent quantities, Reynolds average Navier stokes (RANS) equation, Closure problem in turbulence SECOND INTERNAL EXAMINATION Turbulence modeling, Different types of turbulence models: advantages and disadvantages. Structured Grid generation – Unstructured Grid generation–Mesh refinement – Adaptive mesh Pressure-velocity decoupling for incompressible flows - SIMPLE and PISO algorithms. Density based solutions for compressible flow, TVD and Van-leerschemes for compressible flow. Typical results of CFD analysis. Stream lines, method for generating stream line, velocity contours and pressure contours, Method of drawing a velocity vector. Solution of Lagrangian coordinates of a fluid	problem up to four unknowns using TDMA. Cell centred finite volume discretisation of terms of governing equations such as time derivative, convective and diffusion. FIRST INTERNAL EXAMINATION Analytical solution of a one dimensional convection diffusion equation. Upwind, central and blended difference approximations for convection term, QUICK scheme. Implicit, explicit and Crank-Nicolson schemes 7 Statistical representation of turbulent flows: Homogeneous turbulence and isotropic turbulence, General Properties of turbulent quantities, Reynolds average Navier stokes (RANS) equation, Closure problem in turbulence 7 Turbulence modeling, Different types of turbulence models: advantages and disadvantages. Structured Grid generation – Mesh refinement – Adaptive mesh 7 Pressure-velocity decoupling for incompressible flows - SIMPLE and PISO algorithms. Density based solutions for compressible flow. Typical results of CFD analysis. Stream lines, method for generating stream line, velocity contours and pressure contours, Method of drawing a velocity vector. Solution of Lagrangian coordinates of a fluid 7			

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Ye Intro	ar of duction
ME467	Cryogenic Engineering	3-0-0-3	2	016
Prerequis	ite : NIL			
Course O	bjectives: :			
• To	provide the knowledge of evolution of low temperature scien	ice	A	
• To	provide knowledge on the properties of materials at low ten	nperature	1	
• To cry	familiarize with various gas liquefaction systems and to prov ogenic storage and transfer lines	ide desig	n aspec	ts of
Syllabus:		71 20	land a	
Introductio	on to Cryogenics, Applications of Cryogenics, Properties of	of materia	als at c	ryogenic
temperatur	e, Liquefaction systems, Gas liquefaction systems, Cryogen	ic Refrig	eration	systems,
Cryogenic	fluid storage and transfer systems, Cryogenic instrumentation	n, heat ex	changer	s used in
cryogenic	systems			
Expected	Outcomes:			
The studer	its will be able to			
i	. Understand properties of material at cryogenic temperatu	ires.		
ii	Know about various liquefaction systems			
111	. Get ideas on cryogenic refrigeration systems, cryoge	enic instr	umentat	tion and
	cryogenic heat exchangers	-	_	
Text book	S L D-11 Le Companyie Englisher inter			
1. J. I	H. Boll Jr, Cryogenic Engineering			
2. R.	B. Scott, Cryogenic Engineering, Van Nostrand Co., 1959			
3. Ra	ndal F.Barron, Cryogenic systems, McGraw Hill, 1986			
Reference 1. Kla Pre	books: aus D.Timmerhaus and Thomas M.Flynn, Cryogenic Process, New York, 1989.	ess Engin	neering,	Plenum
	Estd.			End Sem.
Module	Contents		Hours	Exam.
				Marks
	Introduction to Cryogenic Systems, Historical development	t, Low		
	remperature properties of Engineering Materials, Meci	nanical		
	properties- Thermal properties- Electric and magnetic prope	erties –		
Ι	Applications of Cryogenics: Applications in space	Food	8	15%
	Applications of Cryogenics. Applications in space,	FOOU		
	Medicine Electronics and Cutting Tool Industry Low temp	erature		
	properties of engineering materials	crature		
	Liquefaction systems ideal system Ioule Thomson exp	ansion		
Π	Adiabatic expansion. Linde Hampson Cycle. Claude & Ca	scaded	7	15%
	System, Magnetic Cooling, Stirling Cycle Cryo Coolers.		-	/ V
	FIRST INTERNAL EXAMINATION		l	

III	Gas liquefaction systems: Introduction-Production of low temperatures-General Liquefaction systems- Liquefaction systems for Neon. Hydrogen and Helium –Critical components of Liquefaction systems	6	15%
IV	Cryogenic Refrigeration systems: Ideal Refrigeration systems- Refrigeration using liquids and gases as refrigerant- Refrigerators using solids as working media;,	6	15%
	SECOND INTERNAL EXAMINATION		
V	Cryogenic fluid storage and transfer systems: Cryogenic Storage vessels and Transportation, Thermal insulation and their performance at cryogenic temperatures, Super Insulations, Vacuum insulation, Powder insulation, Cryogenic fluid transfer systems.	8	20%
V1	Cryogenic instrumentation, Pressure flow-level and temperature measurements. Types of heat exchangers used in cryogenic systems(only description with figure) Cryo pumping Applications	7	20%
END SEMESTER EXAMINATION			

Estd.

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts Part A There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

014 There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Course code	Course Name	L-T-P- Credits	Ye Intro	ar of duction
ME468	Nanotechnology	3-0-0-3	2	016
Prerequis	ite : Nil			
Course O	bjectives:			
• To	introduce nanotechnology and nanostructures	AA	A	
• To	introduce fabrication and characterization techniques used	in nanotec	hnology	,
Syllabus: Introduction Fabrication and device	on and scope, nanostructures Effect of Nanoscale dimenses n methods, Characterisation methods, Applications of Nano es), Nanomachines, Nanofluids, Nanoswitches, nano compu	tions on va technology ters, nanofi	rious pr (nano 1 lters	operties, materials
Expected	Outcomes:	A	_	
The studer	nts will be able to			
i. Un	derstand properties of materials at nanoscale			
ii. Kn	ow the fabrication and characterization methods used in nar	notechnolog	gy	
iii. Ao	equaint with the various applications of nanotechnology			
Text book	is:			
1. A.I 2. Bh Ch 200 3. Jer 4. T H 5. V.S	K. Bandyopdhyay, Nanomaterials, , New age international p arat Bhushan, Springer Handbook of Nanotechnology, 2010 arles P Poole, Frank J Owens, Introduction to Nanotechnolo 03 emy Ramsden, Nanotechnology, William Andrew, Elsevier, Pradeep, Nano: The essentials, McGraw – Hill education, 2 (S.Muralidharan, A Subramnya, Nano science and Technolog	oublishers,2) ogy, John V 2011)07 gy, Ane boo	2008 Viley an oks Pvt I	d Sons, _td
Reference	books:			
1. Gre	egory Timp, Nanotechnology, Springer-Verlag, 2009			
2. Joł	nn Mongillo, Nano Technology, Greenwood Press, 2007			
3. Ke	lsall Ro <mark>bert. W, Ian Hamley, MarkGeoghegan, Nanoscale S</mark>	Science and	Techno	ology,
Wi	ley Eastern,2005	1		
	COURSE PLAN			
Module	Contents 2014		Hours	End Sem. Exam. Marks
I	Introduction and scope-Classification of nanostructures: 0 dots, quantum wires, quantum wells, nanoclusters, nanotub lattices, nanocrystalline materials-Effects of nanometer len – Changes to the system total energy, changes to the structures.	Quantum es, super gth scale e system	7	15%
II	Effect of Nanoscale dimensions on various properties – st thermal, chemical, mechanical, magnetic, optical and e properties.	tructural, lectronic	7	15%

III	Fabrication methods: Top down and bottom up approaches-Top down processes: Milling, Lithographics, machining process, pulsed laser methods- Bottom up processes: Vapour phase deposition methods, PVD, CVD, electro deposition, plasma assisted deposition process, MBE, chemical methods, colloidal and solgel methods	7	15%		
IV	Characterisation methods: General classification of characterization methods, Microscopy techniques: Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Tunneling Microscopy, Atomic Force Microscopy, Diffraction Techniques-Spectroscopy Techniques – Raman Spectroscopy, Surface analysis and depth profiling- Mechanical Properties- Magnetic and Thermal properties.	7	15%		
SECOND INTERNAL EXAMINATION					
V	Applications of Nanotechnology (nano materials and devices)- Applications of nanocomposites, nanocrystalline materials, nano layered structures, nanomagnetic materials-magneto resistance- Carbon nanotubes: SW, MW, nanostructured coatings- nano sensors: order from chaos, characterization, perception, nano sensor based on quantum size effect, Electrochemical sensors, Sensors based on physical properties, Nanobiosensors, smart dust	7	20%		
V1	Nanomachines: covalent and non covalent approaches, Molecular motors and machines, molecular devices, single molecular devices, practical problems with molecular device- Nanofluids: nanoparticles, preparation of nanofluids, thermophysical properties of nanofluids in comparison with base fluid. Nanoswitches - nano computers- nanofilters	7	20%		
		END SEMESTER EXAMINATION			

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

2014

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks) **Note:** Each question can have a maximum of four sub questions, if needed.

Course code	Course Name	L-T-P- Credits	Year	of oduction
ME4	59 FINITE ELEMENT ANALYSIS	3-0-0-3	2	016
	Prerequisite : Nil	-A - A		
Course C	bjectives	AA	1	
1. To le	arn the mathematical background of finite element methods.		1.	
2. To u	derstand the basics of finite element formulation.	A		
3. To p	actice finite element methodologies through structural and heat tra	nsfer probl	ems.	
Syllabus		<i>.</i>		
Introduct	on; Brief history; Review of elasticity; Direct approach;1D b	ar elemen	t; Ana	logous
problems	Beam elements; Plane truss; Coordinate transformations; Interpo	olation fun	ctions;	Shape
functions	Variational methods; Strong and weak form; Rayleigh Ritz m	ethod; FE	E form	lation
elements;	Weighted residual methods; FEA software packages.	ements, is	so para	metric
Expected	outcome			
The stude	nts will be able to			
i. uno	lerstand the mathematical background of FEM.			
ii. sol	ve real life problems using finite element analysis			
Text Boo	ks:			
1. Cha	ndrupatla T R., Finite Element Analysis for Engineering and Tech	n <mark>o</mark> logy, Ur	niversit	y Press,
2004				
2. Hutt	on D V., Fundamentals of Finite Element Analysis, Tata McGraw	-Hill, 2005	0010	
3. Log	an D L., A first course in the Finite Element Method, Thomson-Er	gineering,	2012	
4. Sest	u P., Text Book of Finite Element Analysis, PHI Learning Pvt. Lt	d., 2003		
Referenc	es Books:			
1. Coo	K R D., Malkus D S., Plesha M E., Witt R J., Concepts and Analysi	s of Finite		
Elen	nent Applications, John Wiley & Sons, 1981			
2. Red	ly J N., An introduction to the Finite Element Method, McGraw-1	Hill, 2006		
	Course	-		
	Course	- I		End
Module	Contents		Hours	Sem.
				Exam Morke
				1141 85
	Introduction to Finite Element Method (FEM)- Brief history- Apj	olication		
т	Di FEA- Auvanages and disauvanages. Review of electicity. Strain displacement relations. Compatibility	-Stress	•	15%
1	strain relations- Boundary conditions- Plane stress, plane strain and	nd	2	1370
	axisymmetry.			

	Direct approach-1D bar element- element stiffness- Assembly of elements- properties of [K] matrix- Treatment of boundary conditions- Stress computation.	4		
Π	Analogous problems of torsion, heat conduction and laminar pipe flow. Beam elements- FE formulation-element stiffness matrix- boundary conditions.	4	20%	
	Plane truss- Element formulation-Co ordinate transformation- Local and global co ordinates- Stress calculations.	4	2070	
	FIRST INTERNAL EXAMINATION	I		
ш	Interpolation functions-Shape functions- Lagrange interpolation- 1D linear and quadratic element	3	15%	
	Variational methods: Functionals- Strong and weak form- Essential and natural boundary conditions.	3	1370	
	Principle of stationary potential energy- Rayleigh Ritz method.	3		
IV	FE formulation using minimization of potential- B matrix- Element matrices for bar element- Consistent nodal loads.	4	4 20%	
	SECOND INTERNAL EXAMINATION			
V	Higher order elements- Quadratic and cubic elements-Pascal's triangle- Serendipity elements.	3	1.50/	
v	Iso parametric elements, Natural coordinates, Area co ordinates- Quadrilateral elements-Jacobian matrix-Gauss quadrature.	5	15%	
VI	Weighted residual method: Galerkin FE formulation. Axially loaded bar- Heat flow in a bar	5		
	Structure of FEA software package. Introduction to Modal analysis, non linear analysis and coupled analysis.	2	15%	
	END SEMESTER EXAMINATION			

2014

Maximum marks: 100,

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks) Time: 3 hrs

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Students will have to answer any four questions out of 6 (47(10 marks =40 marks

Course code	Course Name	L-T-P- Credits	Year of Introduction	
ME471	Optimization Techniques	3-0-0-3	2016	
Prerequisi	te - ME372 Operations Research			
Course Ob • To I	jective: learn the various optimization techniques for effective deci	sion making.	1	
Syllabus:	TECHNOLOGI	CAL	5	
Linear prog	gramming – integer programming– network models – go	al programm	ing – dynamic	
programmi	ng – nonlinear programming – nontraditional optimization			
Expected (Dutcome:			
The solv	students will be able to understand optimization tech	niques and	apply them in	
Text Book	s:			
 Mil Wil Pan Pan 200 Tah 	ler, D. M. and Schmidt, J. W., Industrial Engineering and G ey & Sons, Singapore, 1990. eerselvam, R., Operations Research, Prentice Hall of India nerselvam, R., Design and Analysis of Algorithms, Prentic 7. a, H. A., Operations Research, Pearson, 2004.	Operations Ro , New Delhi, ce Hall of Ind	esearch, John 2008. ia, New Delhi,	
Reference	Books:	11	6. M	
 Banks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M., Discrete-Event System Simulation, Third Edition, Pearson Education, Inc., 2001 Goel, B. S. and Mittal, S. K., Operations Research, Pragati Prakashan, Meerut, 1999. Ravindran, Phillips and Solberg, Operations Research Principles and Practice, Willey & Sons, 1987 Srinivasan, G. "Operations Research-Principles and Applications", latest edition, PHI Pvt. Ltd. 				
Course Plan				
Module	Contents	н	ours End Sem. Exam. Marks	
Ι	Review of linear programming- revised simplex method		1 1 15%	
	Dual simplex method		1	

		1	
	Sonsitivity analysis shances offering feasibility shances	1	
	affecting optimality	1	
		1	
	Integer programming – importance – applications	1	
II	Branch and bound technique	<u>1</u> 1	
	Gomory's cutting plane method	1 1	15%
	Solution to travelling salesman problem	1	
	FIRST INTERNAL EXAMINATION		
	Network models – minimal spanning tree problem	1	
	PRIM's algorithm	1	
	Kruskal's algorithm	1	
III	Shortest route problem –applications	1	15%
	Systematic method	1	
	Dijkstra's algorithm	1	
	Floyd's algorithm	1	
117	Goal programming – goal programming formulation-application.	1 1	
	Simplex method for solving goal programming	1 1	15%
	Dynamic programming – terminologies – forward and backward recursion –applications	1	13 /0
	Shortest path problems	1	
	SECOND INTERNAL EXAMINATION		
	Nonlinear programming - convey quasi-convey concave and	1	
	unimodal functions – theory of constrained optimization	1	
		1	
V	Lagrangean method	1	20%
		1	
	Kuhn-Tucker conditions	1	
	2014	1	
	Nontraditional optimization – computational complexity-	1	
	Introduction to metaheuristics – areas of application	1	
VI	Genetic algorithm (GA) – terminologies – steps and examples	1	20%
	Tabu search (TS) – steps and examples	1	
	Simulated annealing (SA) – steps and examples	1	
	Ant colony optimization (ACO) – steps and examples - Particle	1	
	Swarm Optimization (PSO)-Steps and examples	1	

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks = 40 marks)

Course code	Course Name	L-T-P- Credits I	Year of ntroduction			
ME47	2 FAILURE ANALYSIS AND DESIGN 3 Prerequisite: Nil	-0-0-3	2016			
Course O 1. To ur 2. To in 3. To ur	 Course Objectives 1. To understand the failure modes and theories of failure. 2. To include the effect of cyclic loading, fatigue and endurance limit in design. 3. To understand the methods for lifecycle prediction. 					
Syllabus Material Fatigue 1 factors, s cumulativ practice,	Syllabus Material failure modes and their identification. Static loading, combined stress, theories of failure. Fatigue loading, high cycle fatigue, fatigue testing, S-N-P curves, endurance diagrams, influence factors, stress concentration factors and notch sensitivity, fatigue design for combined stress, cumulative damage and life prediction, low cycle fatigue, fracture mechanics principles in design practice, contact fatigue, high temperatures, corrosion. Shock and impact loading.					
Expected The stude i. ana ii. des iii. mal	outcome nts will be able to lyze real life failure modes and use of theories for failure prediction ign for fatigue and cyclic loading ke comprehensive life cycle prediction of designed products	on				
Text Boo 1. Col 2. Sur	ks: lins. J. A., Failure of Materials in Mechanical Design, John Wiley & esh S, Fatigue of Materials, Cambridge University Press, 1998	Sons, 1993				
Reference1. Pra2. With	References Books: 1. Prashant Kumar, Elements of Fracture Mechanics, Wheeler Publishing, 1999 2. Withered C. E., Mechanical Failure Avoidance Strategies and Techniques, McGraw-Hill, 1994					
Course Plan						
Module	Contents	Hour	End Sem. s Exam Marks			
I	Introduction to material failure modes- Identification of failure mode Combined stresses –Theories of failure	es 3 5	15%			

п	Fatigue loading, high cycle fatigue, fatigue testing, S-N-P curves-factors affecting S-N-P curve- endurance diagrams	6	20%	
	FIRST INTERNAL EXAM			
ш	Cumulative damage and life prediction- Fracture control Fatigue design for combined stress	5 2	15%	
IV	Low cycle fatigue – Cumulative damage in low cycle fatigue Influence factors- Stress concentration factors and notch sensitivity	4	20%	
	SECOND INTERNAL EXAM			
V	Fracture mechanics principles in design practice	6	15%	
	Contact fatigue, high temperatures, corrosion	4		
VI	Shock and impact loading.	3	15%	
	END SEMESTER EXAM			

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks =30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks =40 marks)

Course code	Course Name	L-T-F Credi	- Y ts Intr	lear of coduction
ME474	Micro and Nano Manufacturing	3-0-0-	3	2016
	Prerequisite: Nil		5	2010
Course Objectives				
1. To give awar	eness of different techniques used in micro a	nd nano man	ufacturin	Ig
2. To give in-de	oth idea of the conventional techniques used	in micro ma	nufacturi	ng
3. To introduce	Non-conventional micro-nano manufacturir	ng and finishi	ng appro	baches
4. To introduce	Micro and Nanofabrication Techniques a	and other pr	ocessing	routes in
Micro and na	10 manufacturing		h. And	
5. To know diff	erent techniques used in Micro Joining and t	he metrology	tools in	micro and
nano manufa	turing.	L . A		
Svllabus				
Introduction to Preci	ion engineering- Bulk micromachining – M	licro-energy -	Carbon	Nanotubes
- Molecular Logic	ates and Nanolevel Biosensors - Convent	ional Micro	Machini	ng - Non-
conventional micro-	ano manufacturing and finishing approach	es - Micro a	nd Nano	Finishing
Processes - Micro	nd Nanofabrication Techniques - Micro	Joining - Ch	naracteriz	zation and
metrology tools.				
Expected outcome				
The students will				
1. get an awaren	ess of different techniques <mark>u</mark> sed in micro and	d nano manuf	acturing	
2. get in-depth	lea of the conventional techniques used in m	nicro manufac	cturing.	
3. become awa	e about non-conventional micro-nano manu	facturing and	finishin	g
approaches.				
4. get awarenes	on micro and nano finishing processes.			
5. understand m	cro and nanofabrication techniques and othe	er processing	routes ir	n micro
and nano ma	uracturing.	1 the meeting le		
6. Know about o	ufacturing	i the metrolog	gy tools i	in micro
and nano ma			-	
1 Mark I Jack	on Micro and Nano-manufacturing Spring	er 2006		
2 Mark I Jack	on Micro-fabrication and Nano-manufacture	ring - Pulsed	water dr	on
2. Mark. 5. sach	ng CRC Press 2006	ing i uised	water ur	op
3. Nitaigour Pre	mchand Mahalik, Micro-manufacturing and	Nanotechnol	ogv. 200	6
4. V.K.Jain. Mi	ro-manufacturing Processes, CRC Press, 20	12.	06, 200	0.
	Course Plan			
				End
Module	Contents		Hours	Sem.
				Exam.
Interal-	on to Provision angingaring magne milling	and miana		IVIARKS
drilling	Micro-electromechanical systems	, and inicio		
I application	ns Micro phenomenon in Flectro-phot	tography _	1	15%
application	ns	Supiry		

	Introduction to Bulk micromachining, Surface micromachining- steps, Micro instrumentation – applications, Micro Mechatronics,	1	
	Nanofinishing – finishing operations. Laser technology in micro manufacturing- Practical Lasers,	1	
	Application of technology fundamentals Introduction to Micro-energy and chemical system (MECS), Space Micro-propulsion, e-Beam Nanolithography – important	1	
	techniques, Introduction to Nanotechnology Carbon Nano-tubes – properties and structures, Molecular Logic Gates and Nano level Biosensors - applications	1	
	Introduction to mechanical micromachining, Micro drilling – process, tools and applications	1	
	Micro turning- process, tools and applications, Diamond Micro turning – process, tools and applications	1	
II	Micro milling and Micro grinding – process, tools and applications	1	15%
	Micro extrusion- process and applications	1	
	micro bending with Laser	1	
	FIRST INTERNAL EXAMINATION	1	
	Introduction to Non-conventional micro-nano manufacturing	1	
	Process, principle and applications – Abrasive Jet Micro Machining, WAJMM	1	
III	Micro EDM, Micro WEDM, Micro EBM – Process principle, description and applications	1	15%
	Micro ECM, Micro LBM - Process principle, description and applications	1	
	Focused ion beams - Principle and applications	1	
	Introduction to Micro and Nano Finishing Processes	1	
	Magnetorheological Finishing (MRF) processes, Magnetorheological abrasive flow finishing processes (MRAFF) – process principle and applications	1	
	Force analysis of MRAFF process,	1	
	Magnetorheological Jet finishing processes	1	
IV	Working principle and polishing performance of MR Jet Machine	1	15%
	Elastic Emission Machining (EEM) – machine description, applications	1	
	Ion Beam Machining (IBM) – principle, mechanism of material removal, applications	1	
	Chemical Mechanical Polishing (CMP) – Schematic diagram, principle and applications	1	
	SECOND INTERNAL EXAMINATION		
V	Introduction to Micro Fabrication: basics, flowchart, basic chip	1	20%

	making processes				
	Introduction to Nanofabrication, Nanofabrication using soft				
	lithography – principle, applications – Examples (Field Effect	1			
	Transistor, Elastic Stamp)				
	Manipulative techniques – process principle, applications	1			
	Introduction to Carbon nano materials – CN Tubes	1			
	CN Tubes – properties and applications	1			
	CN Tube Transistors – Description only	1	-		
	Diamond - Properties and applications	1			
	CVD Diamond Technology	1			
	LIGA Process	1			
	Laser Micro welding – description and applications, Defects	1			
	Electron Beam Micro-welding – description and applications	1			
	Introduction to micro and nano measurement, defining the scale,	1			
	uncertainty	L			
	Scanning Electron Microscopy – description, principle	1			
	Scanning White-light Interferometry – Principle and application	1			
V1	Optical Microscopy – description, application	1	20%		
	Scanning Probe Microscopy, scanning tunneling microscopy-				
	description, application	1			
	Confocal Microscopy - description, application	1			
	Introduction to On-Machine Metrology	1			
	END SEMESTER EXAMINATION]		
	END SEIVIESTER EAAIVIIIVATION				

Estd.

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks =40 marks)

Course code	Course Name	L-T-P- Credits	Ye Intro	ear of duction	
ME476	Material Handling & Facilities Planning	3-0-0-3	2	016	
	Prerequisite : Nil				
Course O	bjectives: :				
• To	understand the overall facilities planning process	AA	A.		
• To	educate product, process and schedule design and their effects	s on the f	acility	layout	
• To	introduce concepts of material handling and safety in industrie	es.			
Synabus:	TECHNOLOUR				
Design of application	a layout of factories, General equipment for amenities of wo	orking penomical a	ople, C spects	Computer	
Expected The studer i. As ii. De iii. Kn iv. Un	Outcomes: its will be able to sess the value of facility planning on the strategy of a firm velop a systematic plant layout ow the environmental and economical aspects in facilities plan derstand various material handling systems	nning			
Text book	s/Reference books:				
 A W Peymberton, Plant layout and Material Handling, John Wiley James A Apple, Plant layout and Material Handlin, Krieger Pub Co,1998 John A Sehbin, Plant layout and Material Handling- K C Arora & Shinde, Aspects of Material handling, Lakshmi Publications. P B Mahapatra, Operations Management, PHI, 2010 					
	COURSE PLAN			E.J.	
Module	Contents	E	Iours	End Sem. Exam. Marks	
I	Design of layout of factories, Office, Storage area etc consideration of facilities of working people, Storage facili and general equipment for amenities of working peop Product, Process and combination layout –Systematic la planning, Design of Assembly lines, Line balancing methods	c. on lities ble – ayout s.	8	15%	
II	IIComputer applications in layout designs, Environmental aspects like lighting, Ventilation, dust control, humidity. Different type of Plant services like steam compressed air etc.615%				
	FIRST INTERNAL EXAMINATION	. 1			
III	Plant safety, Elements off Industrial safety- Causes prevention of accidents – Pollution and environme consideration.	and ental	6	15%	
IV	Introduction, Material Handling systems, Material Hand principles, Classification of Material Handling Equipm Relationship of material handling to plant layout.	dling nent,	8	15%	

SECOND INTERNAL EXAMINATION				
V	Basic Material Handling systems: Selection, Material Handling method- path, Equipment, function oriented systems.	7	20%	
V1	Methods to minimize cost of material handling- Maintenance of Material Handling Equipments, Safety in handling, Ergonomics of Material Handling equipment. Design, Miscellaneous equipment	7	20%	
END SEMESTER EXAMINATION				

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

2014

Course co	ode	Course Name	L-T-P- Credits	Ye Intro	ear of duction
ME482	2	Energy Conservation and Management	3-0-0-3	2	016
	100	Prerequisite : Nil			
Course O 1. To 2. To 3. To	bjecti enabl know o unde	ves: : e analysis of the energy data of industries, energy accorrence energy audit and methodologies for energy savings rstand utilization of the available resources in optimal	ounting an ways	d baland	cing
Syllabus: Energy, F Componer Energy au	Power, nts of dit, Er	Past & Present scenario of World; National En EB billing, Boilers, Furnaces and Thermic Fluid Heate hergy Economics	nergy con ers, Pumps	sumptic , Fans,	on Data, Blowers,
Expected The studen	Outco nts wil i. c. i. s	omes: I be able to arryout energy accounting and balancing uggest methodologies for energy savings			
 Callaghn, P.W. Design and Management for Energy Conservation, Pergamon Press, Oxford,1981. Witte. L.C., P.S. Schmidt, D.R. Brown, Industrial Energy Management and Utilisation, Hemisphere Publ, Washington, 1988. 					
 References: Dryden. I.G.C., The Efficient Use of Energy Butterworths, London, 1982 Energy Manager Training Manual (4 Volumes) available at www.energymanager training.com, a website of Bureau of Energy Efficiency (BEE), A statutory body under Ministry of Power, Government of India, 2004. Murphy. W.R. and G. Mc KAY, Energy Managemen", Butterworths, London 1987. Turner. W.C., Energy Management Hand book, Wiley, New York, 1982. 					
Module		2014 Contents	I	Iours	End Sem. Exam. Marks
Ι	Ener Ener with Meth Instru	gy - Power – Past & Present scenario of World; Na gy consumption Data – Environmental aspects asso energy utilization –Energy Auditing: Need, nodology and Barriers. Role of Energy Man uments for energy auditing	ational ociated Types, agers.	7	15%

П	Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors - Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in Illumination.	7	15%
	FIRST INTERNAL EXAMINATION		
III	Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency computation and encon measures. Steam: Distribution &Usage: Steam Traps, Condensate Recovery, Flash Steam Utilization, Insulators & Refractories	7	15%
IV	Energy efficiency in Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets	7	15%
	SECOND INTERNAL EXAMINATION		
V	Energy audit, need, types of energy audit. Energy management (audit) approach-understanding energy costs, Bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel and energy substitution, energy audit instruments and metering	7	20%
V1	Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concepts	7	20%

END SEMESTER EXAMINATION

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) Part C

There should be 3 questions each from module V and VI

Each question carries 10 marks

Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Course code	Course Name	L-T-P- Credits	Ye Intro	ar of duction			
ME484	Finite Element Analysis	3-0-0-3	2	016			
Prerequisite : Nil							
Course Objectives: : 1. To introduce the concepts of Mathematical Modeling of Engineering Problems. 2. To appreciate the use of FEA to a range of Engineering Problems.							
Syllabus:							
Historical Background, Mathematical Modeling of field problems in Engineering ,Governing Equations, Basic concepts of the Finite Element Method, Solution of problems from solid mechanics and heat transfer, Fourth Order Beam Equation, Second Order 2D Equations involving Scalar Variable Functions, Equations of elasticity, Natural co-ordinate systems							
 Expected Outcomes: The students will be able to understand different mathematical techniques used in FEM analysis and use them in Structural and thermal problems 							
Text books:							
 Reddy. J.N., An Introduction to the Finite Element Method, 3rd Edition, Tata McGraw- Hill, 2005 Seshu, P, Text Book of Finite Element Analysis, Prentice-Hall of India Pvt. Ltd., New Delhi, 2007 							
Reference books:							
1. Bhatti Asghar M, Fundamental Finite Element Analysis and Applications, John Wiley & Sons,2005 (Indian Reprint 2013)							
 Chandrupatla & Belagundu, Introduction to Finite Elements in Engineering, 3rd Edition, Prentice Hall College Div, 1990 Logan, D.L., A first course in Finite Element Method, Thomson Asia Pvt. Ltd., 2002 Rao, S.S., The Finite Element Method in Engineering, 3rd Edition, Butterworth Heinemann, 2004 Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, Concepts and Applications of Finite Element Analysis, 4th Edition, Wiley Student Edition, 2002. 							
COURSE PLAN							
	2014			End			
Module	Contents	I	Hours	Sem. Exam. Marks			
I	Historical Background – Mathematical Modeling of problems in Engineering – Governing Equations – Discr continuous models – Boundary, Initial and Eigen problems– Weighted Residual Methods – Var Formulation of Boundary Value Problems – Ritz Techniqu	of field rete and Value riational ue	7	15%			
II	Basic concepts of the Finite Element Method. One Dime	ensional	7	15%			

			1		
	Second Order Equations – Discretization – Element types- Linear				
	and Higher order Elements – Derivation of Shape functions and				
	Stiffness matrices and force vectors- Assembly of Matrices				
FIRST INTERNAL EXAMINATION					
	Solution of problems from solid mechanics and heat transfer		15%		
ш	Longitudinal vibration frequencies and mode shapes. Fourth				
	Order Beam Equation – Transverse deflections and Natural				
	frequencies of beams.				
IV	Second Order 2D Equations involving Scalar Variable Functions		15%		
	- Variational formulation - Finite Element formulation -				
	Triangular elements – Shape functions and element matrices and				
	vectors Application to Field Problems - Thermal problems -				
	Torsion of Non circular shafts –Quadrilateral elements – Higher				
	Order Elements				
Order Elements.					
SECOND INTERNAL EXAMINATION					
V	Equations of elasticity – Plane stress, plane strain and				
	axisymmetric problems – Body forces and temperature effects –		20%		
	Stress calculations - Plate and shell elements.				
V1	Natural co-ordinate systems – Isoparametric elements – Shape				
	functions for iso parametric elements – One and two dimensions				
	- Serendipity elements - Numerical integration and application				
	to plane stress problems - Matrix solution techniques – Solutions	7	20%		
	Techniques to Dynamic problems – Introduction to Analysis				
	Software.				

END SEMESTER EXAMINATION

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)