SCHEME AND SYLLABI FOR

FIFTH SEMESTER

OF

BACHELOR OF

TECHNOLOGY IN

COMPUTER SCIENCE AND

ENGINEERING

FROM 2009 ADMISSION ONWARDS

CALICUT UNIVERSITY (P.O), THENHIPALAM
<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Marks</th>
<th>Semester-end duration-hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN09 401B</td>
<td>Engineering Mathematics IV</td>
<td>3 L 1 T</td>
<td>30 70</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EN09 402</td>
<td>Environmental Studies</td>
<td>2 L 1 T</td>
<td>30 70</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CS09 403</td>
<td>Computer Organization and Design</td>
<td>4 L 1 T</td>
<td>30 70</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>CS09 404</td>
<td>Programming paradigms</td>
<td>3 L 1 T</td>
<td>30 70</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CS09 405</td>
<td>Systems Programming</td>
<td>3 L 1 T</td>
<td>30 70</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CS09 406</td>
<td>Microprocessor Based design</td>
<td>3 L 1 T</td>
<td>30 70</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CS09 407(P)</td>
<td>Data Structures Lab</td>
<td>3 L 1 T</td>
<td>50 50</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CS09 408(P)</td>
<td>Digital Systems Lab</td>
<td>3 L 1 T</td>
<td>50 50</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18 L 6 T</td>
<td>6</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours / Week</th>
<th>Marks</th>
<th>Semester-end duration-hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS09 501</td>
<td>Software Architecture and Project Management</td>
<td>3 L 1 T</td>
<td>30 70</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CS09 502</td>
<td>Industrial Economics and Principles of Management</td>
<td>2 L 1 T</td>
<td>30 70</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CS09 503</td>
<td>Signal Processing</td>
<td>3 L 1 T</td>
<td>30 70</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CS09 504</td>
<td>Operating Systems</td>
<td>4 L 1 T</td>
<td>30 70</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>CS09 505</td>
<td>Digital Data Communication</td>
<td>3 L 1 T</td>
<td>30 70</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CS09 506</td>
<td>Theory of Computation</td>
<td>3 L 1 T</td>
<td>30 70</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CS09 507(P)</td>
<td>Programming Paradigm Lab</td>
<td>3 L 1 T</td>
<td>50 50</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CS09 508(P)</td>
<td>Hardware Lab</td>
<td>3 L 1 T</td>
<td>50 50</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18 L 6 T</td>
<td>6</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>
Objectives

- To impart the basic concepts of software architecture and design patterns.
- To develop an understanding about development of complex software systems in a methodical manner.

Module I (13 hours)

Module II (11 hours)

Archetypes and Archetype Patterns, Model Driven Architecture with Archetype Patterns. Literate Modeling, Archetype Pattern, Customer Relationship Management (CRM) Archetype Pattern, Product Archetype Pattern, Quantity Archetype Pattern, Rule Archetype Pattern. Design Patterns, Creational Patterns, Patterns for Organization of Work, Access Control Patterns, Service Variation Patterns, Service Extension Patterns

Module III (13 hours)

Object Management Patterns Adaptation Patterns, Communication Patterns, Architectural Patterns, Structural Patterns, Patterns for Distribution, Patterns for Interactive Systems Adaptable Systems, Frameworks and Patterns, Analysis Patterns Patterns for Concurrent and Networked Objects, Patterns for Resource Management, Pattern Languages, Patterns for Distributed Computing.

Module IV (15 hours)

Defining EAI, Data-Level EAI, Application Interface-Level EAI, Method-Level EAI, User Interface-Level EAI, The EAI Process - An Introduction to EAI and Middleware, Transactional Middleware and EAI, RPCs, Messaging, and EAI, Distributed Objects and EAI, Database-Oriented Middleware and EAI, Java Middleware and EAI, Implementing and Integrating Packaged Applications—The General Idea, XML and EAI, Message Brokers—The Preferred EAI Engine, Process Automation and EAI. Layering, Organizing Domain Logic, Mapping to Relational Databases, Web Presentation, Domain Logic Patterns, Data Source Architectural Patterns, Object-Relational Behavioral Patterns, Object-Relational Structural Patterns, Object-Relational Metadata Mapping Patterns, Web Presentation Patterns, Distribution Patterns, Offline Concurrency Patterns.

Reference Books

4. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, *Design Patterns: Elements of Reusable Object-Oriented Software*, Addison-Wesley Professional; 1st edition.
Internal Continuous Assessment (Maximum Marks-30)

- **60%** - Tests (minimum 2)
- **30%** - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
- **10%** - Regularity in the class

University Examination Pattern

PART A: Short answer questions (one/two sentences)
5 x 2 marks = 10 marks
All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.

PART B: Analytical/Problem solving questions
4 x 5 marks = 20 marks
Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.

PART C: Descriptive/Analytical/Problem solving questions
4 x 10 marks = 40 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 70
CS09 502: Industrial Economics and Principles of management
(Comman for CS and IT)

Teaching scheme
2 hours lecture and 1 hour tutorial per week

Credits: 3

Section A : Industrial Economics

Objectives
• To provide knowledge on fundamentals of economics, forms of business organisations, trade and taxation.

Module I (14 hours)

Module II (13 hours)

Text Books

Reference Books
1. G. Narendrababu, *Elements of Economic Analysis*
2. K. P. M. Sundaran, *Money, Banking, Trade & Finance*

Internal Continuous Assessment *(Maximum Marks-30)*
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class
Section B: Principles of Management

Objectives

- To provide knowledge on principles of management, decision making techniques, accounting principles and basic management streams.

Module III (13 hours)

Principles of Management – Evolution of management theory and functions of management
Organizational structure – Principles and types.
Decision making – Strategic, tactical and operational decisions, decision making under certainty, risk and uncertainty and multistage decisions and decision tree. Human resource management – Basic concepts of job analysis, job evaluation, merit rating, wages, incentives, recruitment, training and industrial relations.

Module IV (14 hours)

Financial management – Time value of money and comparison of alternative methods.
Costing – Elements and components of cost, allocation of overheads, preparation of cost sheet – break even analysis
Marketing management – Basic concepts of marketing environment, marketing mix, advertising and sales promotion.
Project management – Phases, organization, planning, estimating, planning using PERT & CPM.
Reference Books

Internal Continuous Assessment (Maximum Marks-30)

- **60% -** Tests (minimum 2)
- **30% -** Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
- **10% -** Regularity in the class

University Examination Pattern

PART A: Short answer questions (one/two sentences)
2 x 2 marks = 4 marks
1 x 1 mark = 1 mark

All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.

PART B: Analytical/Problem solving questions
2 x 5 marks = 10 marks

Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.

PART C: Descriptive/Analytical/Problem solving questions
2 x 10 marks = 20 marks

Two questions from each module with choice to answer one question.

Maximum Total Marks: 35

Note: Section A (Engineering Economics) and Section B (Principles of Management) should be written in separate answer sheets.
CS09 503: Signal Processing

Objectives

- To impart the basic concepts of continuous and discrete signals and systems
- To develop understanding about frequency domain approaches used for analysis of continuous and discrete time signals and systems.

Module I (14 hours)

Module II (12 hours)

Module III (12 hours)

Module IV (14 hours)
Text Books
2. Proakis J.G. & Manolakis D.G., *Digital signal processing, principles, algorithms & applications* – Pearson Education

Reference Books
1. Bandyopadhyay M N, *Introduction to Signals and Systems and DSP*, PHI

Internal Continuous Assessment (Maximum Marks-30)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

Note: One of the assignments shall be simulation of continuous systems using any technical computing software

University Examination Pattern

PART A: Short answer questions (one/two sentences)
5 x 2 marks=10 marks
All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.

PART B: Analytical/Problem solving questions
4 x 5 marks=20 marks
Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.

PART C: Descriptive/Analytical/Problem solving questions
4 x 10 marks=40 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 70
CS09 504: Operating Systems

Teaching scheme
4 hours lecture and 1 hour tutorial per week

Credits: 5

Objectives

• To impart the knowledge on the need and requirement of an interface between Man and Machine; to enable the learners to identify the difference between the system software and the application software and their design requirements.
• To teach the features of operating systems and the fundamental theory associated with process, memory and file management components of operating systems.

Module I (16 hours)
Review of operating system strategies - resources - processes - threads - objects, -operating system organization - design factors - functions and implementation considerations - devices - characteristics - controllers - drivers – device management - approaches - buffering - device drivers - typical scenarios such as serial communications - storage devices etc.

Module II (14 hours)

Module III (17 hours)
Memory management - issues - memory allocation - dynamic relocation various management strategies - virtual memory - paging - issues and algorithms segmentation - typical implementations of paging & segmentation systems.

Module IV (18 hours)
File management - files - implementations - storage abstractions - memory mapped files - directories and their implementation - protection and security - policy and mechanism - authentication - authorization - case study of Unix kernel and Microsoft windows NT (concepts only).

Text Books

Reference Books
1. Silberschatz & Galvin, Operating System Concepts, Addison Wesley
Internal Continuous Assessment (Maximum Marks-30)

- **60% - Tests (minimum 2)**
- **30% - Assignments (minimum 2)** such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
- **10% - Regularity in the class**

University Examination Pattern

PART A: Short answer questions (one/two sentences)
5 x 2 marks = 10 marks
- All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.

PART B: Analytical/Problem solving questions
4 x 5 marks = 20 marks
- Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.

PART C: Descriptive/Analytical/Problem solving questions
4 x 10 marks = 40 marks
- Two questions from each module with choice to answer one question.

Maximum Total Marks: 70
Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objectives
- To introduce the concepts of communication of digital data by looking at the various aspects of generation, transmission and reception.
- To introduce the various protocols involved in communication of digital content.

Module I (13 hours)

Module II (13 hours)

Module III (13 hours)

Module IV (13 hours)

Text Books

Reference Books
2. Fred Halsall, Data Communication, Computer Networks and Open Systems, Pearson Education.
3. Harold Kolimbris, Digital Communication Systems, Pearson Education

Internal Continuous Assessment (Maximum Marks-30)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class
University Examination Pattern

PART A: *Short answer questions (one/two sentences)*
5 x 2 marks = 10 marks
All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.

PART B: *Analytical/Problem solving questions*
4 x 5 marks = 20 marks
Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.

PART C: *Descriptive/Analytical/Problem solving questions*
4 x 10 marks = 40 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 70
Objectives

- To teach the fundamentals on computational models and computability.
- To introduce the introductory concepts of languages and their classification.
- To familiarize the students on recognizers and automata.
- To impart knowledge on classifying algorithms into the various computability classes and proofs of some standard algorithms.

Module I (13 hours)

Introduction to formal proof - Inductive proofs - Concepts of automata theory - Deterministic finite automata - Nondeterministic finite Automata - equivalence of deterministic and nondeterministic finite automata - Nondeterministic Finite automata with a transitions - Regular expressions - Finite automata and regular expressions - Algebraic laws for Regular expressions - Pumping lemma for regular languages - closure properties of regular languages - Decision properties of regular languages - Equivalence and minimization of automata.

Module II (13 hours)

Context free Grammars - Derivations - sentential forms - The language of grammar - Parse trees - Ambiguity in grammar and languages - Inherently ambiguous languages - Pushdown automata - Formal definition - Graphical notation - The language of a PDA - Acceptance by PDA - Empty stack - Final state - PDAs to grammars - Deterministic PDAs and CFLs - Non deterministic PDAs - Chomsky Normal Form - Greibach Normal Form - Pumping lemma for CFLs - Closure properties of CFLs - Decision properties of CFLs - CYK algorithm.

Module III (14 hours)

Turing Machines - Notation - Instantaneous Description - Transition Diagram - The language of a Turing Machine - Halting of TMs - Programming techniques for Turing Machines - Extension to basic TMs - Nondeterministic TMs - Restricted TMs - Recursive and Recursively Enumerable Languages - Halting problem of TMs - Undecidable problem about TMs - Rice's Theorem - Post Correspondence problem - Undecidability of Post Correspondence Problem - Undecidable problems on Languages.

Module IV (12 hours)

Text Books

Reference Books

<table>
<thead>
<tr>
<th>Internal Continuous Assessment (Maximum Marks-30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60% - Tests (minimum 2)</td>
</tr>
<tr>
<td>30% - Assignments (minimum 2) such as homework, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.</td>
</tr>
<tr>
<td>10% - Regularity in the class</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>University Examination Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART A: Short answer questions (one/two sentences)</td>
</tr>
<tr>
<td>All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.</td>
</tr>
</tbody>
</table>

| **PART B:** Analytical/Problem solving questions | 4 x 5 marks = 20 marks |
| Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module. |

| **PART C:** Descriptive/Analytical/Problem solving questions | 4 x 10 marks = 40 marks |
| Two questions from each module with choice to answer one question. |

Maximum Total Marks: 70
Objectives

- To impart the working experience on paradigms of programming.
- To focus on teaching the paradigms not the platforms. However, adequate knowledge about platform is a need for successful experimentation.

Lab. 1: (object-oriented programming in - Java / C++) - programming to bring out the concept of classes and objects- for example the abstract data type binary tree.

Lab 2: (object-oriented programming) - programming to demonstrate inheritance and class hierarchy - for example define a base class "shape" and derived classes for rectangle, square, ellipse, circle with proper class hierarchy.

Lab.3: (object oriented programming) programming to demonstrate polymorphism, virtual functions - for example define base class for vectors and use inheritance to define complex and real vector with standard operations.

Lab.4: (functional programming - in Lisp) - programming to demonstrate functional specification for a solution - for example implementation of quick sort.

Lab.5: (functional programming) - programming to demonstrate implementation of conventional data structures - for example implementation of binary search tree with insertion, deletion and search operations.

Lab.6: (functional programming) - programming to demonstrate the use of available data structures in functional programming languages - for example implementation of set with membership, union and intersection operations

Lab.7: (logic programming - in prolog) - programming to demonstrate ready implementation of propositional logic statements- for example to find the gcd of two given integers.

Lab.8: (logic programming) - programming to demonstrate language specific features - for example implementation of a logic program to check whether a given NFA accepts the given string.

Lab.9: (concurrent programming- in Java) - demonstration of concurrency support - for example programming to find the least common ancestor of two given nodes in a binary tree.

Lab.10: (concurrent programming- in Java) - demonstration of synchronized concurrency - for example programming for the readers and writers problem.

Reference Books
1. Sethi R., Programming Languages: Concepts and Constructs, Addison Wesley
3. Luger & Stubblefield, Artificial Intelligence, Addison Wesley

Internal Continuous Assessment (Maximum Marks-50)
60%—Laboratory practical and record
30%—Test/s
10%—Regularity in the class
Objectives

• To teach the relevance and characteristics of hardware and operating system components of a digital computer system through various laboratory experiments.
• To enable the students to develop the ability to interface devices to computer systems through various interfacing techniques.

Lab 1: Identification of components/cards and PC assembling from components
Lab 2: Assembly language program for implementing arithmetic operations.
Lab 3, 4: Implementation of a file manager using DOS/BIOS interrupts.
Lab 5: TSR (Terminate and Stay Resident) Programming.
Lab 6: ADC interface.
Lab 7: Stepper Motor interface using DAC.
Lab 8, 9: Parallel Interface: Printer and HEX keyboard.
Lab 10: Serial Interface: PC to PC serial interface using MODEM.

Reference Books
1. Messmer H.P., The Indispensable PC Hardware Book, Addison Wesley

Internal Continuous Assessment (Maximum Marks-50)
60% - Laboratory practical and record
30% - Test/s
10% - Regularity in the class

Semester End Examination (Maximum Marks-50)
70% - Procedure, conducting experiment, results, tabulation, and inference
20% - Viva voce
10% - Fair record